ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11e Unicode version

Theorem ax11e 1789
Description: Analogue to ax-11 1499 but for existential quantification. (Contributed by Mario Carneiro and Jim Kingdon, 31-Dec-2017.) (Proved by Mario Carneiro, 9-Feb-2018.)
Assertion
Ref Expression
ax11e  |-  ( x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  E. y ph )
)

Proof of Theorem ax11e
StepHypRef Expression
1 equs5e 1788 . . 3  |-  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  E. y ph ) )
2119.21bi 1551 . 2  |-  ( E. x ( x  =  y  /\  ph )  ->  ( x  =  y  ->  E. y ph )
)
32com12 30 1  |-  ( x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  E. y ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-11 1499  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ax10oe  1790  drex1  1791  sbcof2  1803  ax11ev  1821
  Copyright terms: Public domain W3C validator