Proof of Theorem sbcof2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | sbcof2.1 | 
. . . . . . 7
⊢ (𝜑 → ∀𝑥𝜑) | 
| 2 | 1 | hbsb3 1822 | 
. . . . . 6
⊢ ([𝑥 / 𝑦]𝜑 → ∀𝑦[𝑥 / 𝑦]𝜑) | 
| 3 | 2 | sb6f 1817 | 
. . . . 5
⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) | 
| 4 | 1 | sb6f 1817 | 
. . . . . . 7
⊢ ([𝑥 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → 𝜑)) | 
| 5 | 4 | imbi2i 226 | 
. . . . . 6
⊢ ((𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑) ↔ (𝑥 = 𝑦 → ∀𝑦(𝑦 = 𝑥 → 𝜑))) | 
| 6 | 5 | albii 1484 | 
. . . . 5
⊢
(∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑦(𝑦 = 𝑥 → 𝜑))) | 
| 7 | 3, 6 | bitri 184 | 
. . . 4
⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑦(𝑦 = 𝑥 → 𝜑))) | 
| 8 |   | ax-11 1520 | 
. . . . . . 7
⊢ (𝑥 = 𝑦 → (∀𝑦(𝑦 = 𝑥 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → (𝑦 = 𝑥 → 𝜑)))) | 
| 9 |   | equcomi 1718 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | 
| 10 | 9 | imim1i 60 | 
. . . . . . . . . 10
⊢ ((𝑦 = 𝑥 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | 
| 11 | 10 | imim2i 12 | 
. . . . . . . . 9
⊢ ((𝑥 = 𝑦 → (𝑦 = 𝑥 → 𝜑)) → (𝑥 = 𝑦 → (𝑥 = 𝑦 → 𝜑))) | 
| 12 | 11 | pm2.43d 50 | 
. . . . . . . 8
⊢ ((𝑥 = 𝑦 → (𝑦 = 𝑥 → 𝜑)) → (𝑥 = 𝑦 → 𝜑)) | 
| 13 | 12 | alimi 1469 | 
. . . . . . 7
⊢
(∀𝑥(𝑥 = 𝑦 → (𝑦 = 𝑥 → 𝜑)) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | 
| 14 | 8, 13 | syl6 33 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → (∀𝑦(𝑦 = 𝑥 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 15 | 14 | a2i 11 | 
. . . . 5
⊢ ((𝑥 = 𝑦 → ∀𝑦(𝑦 = 𝑥 → 𝜑)) → (𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 16 | 15 | alimi 1469 | 
. . . 4
⊢
(∀𝑥(𝑥 = 𝑦 → ∀𝑦(𝑦 = 𝑥 → 𝜑)) → ∀𝑥(𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 17 | 7, 16 | sylbi 121 | 
. . 3
⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 18 |   | ax-i9 1544 | 
. . . . 5
⊢
∃𝑥 𝑥 = 𝑦 | 
| 19 |   | exim 1613 | 
. . . . 5
⊢
(∀𝑥(𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 20 | 18, 19 | mpi 15 | 
. . . 4
⊢
(∀𝑥(𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∃𝑥∀𝑥(𝑥 = 𝑦 → 𝜑)) | 
| 21 |   | ax-ial 1548 | 
. . . . 5
⊢
(∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥∀𝑥(𝑥 = 𝑦 → 𝜑)) | 
| 22 | 21 | 19.9h 1657 | 
. . . 4
⊢
(∃𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | 
| 23 | 20, 22 | sylib 122 | 
. . 3
⊢
(∀𝑥(𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | 
| 24 |   | sb2 1781 | 
. . 3
⊢
(∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | 
| 25 | 17, 23, 24 | 3syl 17 | 
. 2
⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 → [𝑦 / 𝑥]𝜑) | 
| 26 |   | sb1 1780 | 
. . . 4
⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | 
| 27 |   | simpl 109 | 
. . . . . 6
⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝑥 = 𝑦) | 
| 28 |   | 19.8a 1604 | 
. . . . . 6
⊢ ((𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | 
| 29 | 27, 28 | jca 306 | 
. . . . 5
⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 30 | 29 | eximi 1614 | 
. . . 4
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | 
| 31 | 9 | anim1i 340 | 
. . . . . . . . 9
⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑦 = 𝑥 ∧ 𝜑)) | 
| 32 | 27, 31 | jca 306 | 
. . . . . . . 8
⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ (𝑦 = 𝑥 ∧ 𝜑))) | 
| 33 | 32 | eximi 1614 | 
. . . . . . 7
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ (𝑦 = 𝑥 ∧ 𝜑))) | 
| 34 |   | ax11e 1810 | 
. . . . . . 7
⊢ (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ (𝑦 = 𝑥 ∧ 𝜑)) → ∃𝑦(𝑦 = 𝑥 ∧ 𝜑))) | 
| 35 | 33, 34 | syl5 32 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑦(𝑦 = 𝑥 ∧ 𝜑))) | 
| 36 | 35 | imdistani 445 | 
. . . . 5
⊢ ((𝑥 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → (𝑥 = 𝑦 ∧ ∃𝑦(𝑦 = 𝑥 ∧ 𝜑))) | 
| 37 | 36 | eximi 1614 | 
. . . 4
⊢
(∃𝑥(𝑥 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) → ∃𝑥(𝑥 = 𝑦 ∧ ∃𝑦(𝑦 = 𝑥 ∧ 𝜑))) | 
| 38 | 26, 30, 37 | 3syl 17 | 
. . 3
⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ ∃𝑦(𝑦 = 𝑥 ∧ 𝜑))) | 
| 39 | 2 | sb5f 1818 | 
. . . 4
⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑)) | 
| 40 | 1 | sb5f 1818 | 
. . . . . 6
⊢ ([𝑥 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝑥 ∧ 𝜑)) | 
| 41 | 40 | anbi2i 457 | 
. . . . 5
⊢ ((𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑) ↔ (𝑥 = 𝑦 ∧ ∃𝑦(𝑦 = 𝑥 ∧ 𝜑))) | 
| 42 | 41 | exbii 1619 | 
. . . 4
⊢
(∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ ∃𝑦(𝑦 = 𝑥 ∧ 𝜑))) | 
| 43 | 39, 42 | bitri 184 | 
. . 3
⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ ∃𝑦(𝑦 = 𝑥 ∧ 𝜑))) | 
| 44 | 38, 43 | sylibr 134 | 
. 2
⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥][𝑥 / 𝑦]𝜑) | 
| 45 | 25, 44 | impbii 126 | 
1
⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |