| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcom | GIF version | ||
| Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1727 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 2 | equcomi 1727 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 ax-ie2 1517 ax-8 1527 ax-17 1549 ax-i9 1553 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equcomd 1730 sbal1yz 2029 dveeq1 2047 eu1 2079 reu7 2968 reu8 2969 dfdif3 3283 iunid 3983 copsexg 4288 opelopabsbALT 4305 dtruex 4607 opeliunxp 4730 relop 4828 dmi 4893 opabresid 5012 intirr 5069 cnvi 5087 coi1 5198 brprcneu 5569 f1oiso 5895 fvmpopr2d 6082 qsid 6687 mapsnen 6903 suplocsrlem 7921 summodc 11694 bezoutlemle 12329 cnmptid 14753 |
| Copyright terms: Public domain | W3C validator |