| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcom | GIF version | ||
| Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1726 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 2 | equcomi 1726 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1471 ax-ie2 1516 ax-8 1526 ax-17 1548 ax-i9 1552 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equcomd 1729 sbal1yz 2028 dveeq1 2046 eu1 2078 reu7 2967 reu8 2968 dfdif3 3282 iunid 3982 copsexg 4287 opelopabsbALT 4304 dtruex 4606 opeliunxp 4729 relop 4827 dmi 4892 opabresid 5011 intirr 5068 cnvi 5086 coi1 5197 brprcneu 5568 f1oiso 5894 fvmpopr2d 6081 qsid 6686 mapsnen 6902 suplocsrlem 7920 summodc 11665 bezoutlemle 12300 cnmptid 14724 |
| Copyright terms: Public domain | W3C validator |