| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcom | GIF version | ||
| Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1718 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 2 | equcomi 1718 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-17 1540 ax-i9 1544 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equcomd 1721 sbal1yz 2020 dveeq1 2038 eu1 2070 reu7 2959 reu8 2960 dfdif3 3273 iunid 3972 copsexg 4277 opelopabsbALT 4293 dtruex 4595 opeliunxp 4718 relop 4816 dmi 4881 opabresid 4999 intirr 5056 cnvi 5074 coi1 5185 brprcneu 5551 f1oiso 5873 fvmpopr2d 6059 qsid 6659 mapsnen 6870 suplocsrlem 7875 summodc 11548 bezoutlemle 12175 cnmptid 14517 |
| Copyright terms: Public domain | W3C validator |