ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equcom GIF version

Theorem equcom 1706
Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
equcom (𝑥 = 𝑦𝑦 = 𝑥)

Proof of Theorem equcom
StepHypRef Expression
1 equcomi 1704 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
2 equcomi 1704 . 2 (𝑦 = 𝑥𝑥 = 𝑦)
31, 2impbii 126 1 (𝑥 = 𝑦𝑦 = 𝑥)
Colors of variables: wff set class
Syntax hints:  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1449  ax-ie2 1494  ax-8 1504  ax-17 1526  ax-i9 1530
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  equcomd  1707  sbal1yz  2001  dveeq1  2019  eu1  2051  reu7  2934  reu8  2935  dfdif3  3247  iunid  3944  copsexg  4246  opelopabsbALT  4261  dtruex  4560  opeliunxp  4683  relop  4779  dmi  4844  opabresid  4962  intirr  5017  cnvi  5035  coi1  5146  brprcneu  5510  f1oiso  5829  qsid  6602  mapsnen  6813  suplocsrlem  7809  summodc  11393  bezoutlemle  12011  cnmptid  13820
  Copyright terms: Public domain W3C validator