| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcom | GIF version | ||
| Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1728 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 2 | equcomi 1728 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie2 1518 ax-8 1528 ax-17 1550 ax-i9 1554 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equcomd 1731 sbal1yz 2030 dveeq1 2048 eu1 2080 reu7 2972 reu8 2973 dfdif3 3287 iunid 3992 copsexg 4301 opelopabsbALT 4318 dtruex 4620 opeliunxp 4743 relop 4841 dmi 4907 opabresid 5026 intirr 5083 cnvi 5101 coi1 5212 brprcneu 5587 f1oiso 5913 fvmpopr2d 6100 qsid 6705 mapsnen 6922 suplocsrlem 7951 summodc 11779 bezoutlemle 12414 cnmptid 14838 |
| Copyright terms: Public domain | W3C validator |