| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcom | GIF version | ||
| Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1750 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 2 | equcomi 1750 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ie2 1540 ax-8 1550 ax-17 1572 ax-i9 1576 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equcomd 1753 sbal1yz 2052 dveeq1 2070 eu1 2102 reu7 2998 reu8 2999 dfdif3 3314 iunid 4020 copsexg 4329 opelopabsbALT 4346 dtruex 4650 opeliunxp 4773 relop 4871 dmi 4937 opabresid 5057 intirr 5114 cnvi 5132 coi1 5243 brprcneu 5619 f1oiso 5949 fvmpopr2d 6140 qsid 6745 mapsnen 6962 suplocsrlem 7991 summodc 11889 bezoutlemle 12524 cnmptid 14949 |
| Copyright terms: Public domain | W3C validator |