![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equcom | GIF version |
Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1704 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
2 | equcomi 1704 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
3 | 1, 2 | impbii 126 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1449 ax-ie2 1494 ax-8 1504 ax-17 1526 ax-i9 1530 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: equcomd 1707 sbal1yz 2001 dveeq1 2019 eu1 2051 reu7 2934 reu8 2935 dfdif3 3247 iunid 3944 copsexg 4246 opelopabsbALT 4261 dtruex 4560 opeliunxp 4683 relop 4779 dmi 4844 opabresid 4962 intirr 5017 cnvi 5035 coi1 5146 brprcneu 5510 f1oiso 5829 qsid 6602 mapsnen 6813 suplocsrlem 7809 summodc 11393 bezoutlemle 12011 cnmptid 13866 |
Copyright terms: Public domain | W3C validator |