Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equcom | GIF version |
Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1692 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
2 | equcomi 1692 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
3 | 1, 2 | impbii 125 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie2 1482 ax-8 1492 ax-17 1514 ax-i9 1518 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: equcomd 1695 sbal1yz 1989 dveeq1 2007 eu1 2039 reu7 2921 reu8 2922 dfdif3 3232 iunid 3921 copsexg 4222 opelopabsbALT 4237 dtruex 4536 opeliunxp 4659 relop 4754 dmi 4819 opabresid 4937 intirr 4990 cnvi 5008 coi1 5119 brprcneu 5479 f1oiso 5794 qsid 6566 mapsnen 6777 suplocsrlem 7749 summodc 11324 bezoutlemle 11941 cnmptid 12921 |
Copyright terms: Public domain | W3C validator |