![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equcom | GIF version |
Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1715 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
2 | equcomi 1715 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
3 | 1, 2 | impbii 126 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie2 1505 ax-8 1515 ax-17 1537 ax-i9 1541 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: equcomd 1718 sbal1yz 2017 dveeq1 2035 eu1 2067 reu7 2956 reu8 2957 dfdif3 3270 iunid 3969 copsexg 4274 opelopabsbALT 4290 dtruex 4592 opeliunxp 4715 relop 4813 dmi 4878 opabresid 4996 intirr 5053 cnvi 5071 coi1 5182 brprcneu 5548 f1oiso 5870 fvmpopr2d 6056 qsid 6656 mapsnen 6867 suplocsrlem 7870 summodc 11529 bezoutlemle 12148 cnmptid 14460 |
Copyright terms: Public domain | W3C validator |