| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcom | GIF version | ||
| Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1718 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
| 2 | equcomi 1718 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-17 1540 ax-i9 1544 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equcomd 1721 sbal1yz 2020 dveeq1 2038 eu1 2070 reu7 2959 reu8 2960 dfdif3 3274 iunid 3973 copsexg 4278 opelopabsbALT 4294 dtruex 4596 opeliunxp 4719 relop 4817 dmi 4882 opabresid 5000 intirr 5057 cnvi 5075 coi1 5186 brprcneu 5552 f1oiso 5874 fvmpopr2d 6061 qsid 6661 mapsnen 6872 suplocsrlem 7878 summodc 11551 bezoutlemle 12186 cnmptid 14543 |
| Copyright terms: Public domain | W3C validator |