Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equcom | GIF version |
Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1684 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
2 | equcomi 1684 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
3 | 1, 2 | impbii 125 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1429 ax-ie2 1474 ax-8 1484 ax-17 1506 ax-i9 1510 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: equcomd 1687 sbal1yz 1981 dveeq1 1999 eu1 2031 reu7 2907 reu8 2908 dfdif3 3218 iunid 3906 copsexg 4207 opelopabsbALT 4222 dtruex 4521 opeliunxp 4644 relop 4739 dmi 4804 opabresid 4922 intirr 4975 cnvi 4993 coi1 5104 brprcneu 5464 f1oiso 5779 qsid 6548 mapsnen 6759 suplocsrlem 7731 summodc 11292 bezoutlemle 11908 cnmptid 12777 |
Copyright terms: Public domain | W3C validator |