![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equcom | GIF version |
Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom | ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1715 | . 2 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
2 | equcomi 1715 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
3 | 1, 2 | impbii 126 | 1 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie2 1505 ax-8 1515 ax-17 1537 ax-i9 1541 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: equcomd 1718 sbal1yz 2017 dveeq1 2035 eu1 2067 reu7 2955 reu8 2956 dfdif3 3269 iunid 3968 copsexg 4273 opelopabsbALT 4289 dtruex 4591 opeliunxp 4714 relop 4812 dmi 4877 opabresid 4995 intirr 5052 cnvi 5070 coi1 5181 brprcneu 5547 f1oiso 5869 qsid 6654 mapsnen 6865 suplocsrlem 7868 summodc 11526 bezoutlemle 12145 cnmptid 14449 |
Copyright terms: Public domain | W3C validator |