| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcomi | GIF version | ||
| Description: Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcomi | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 1715 | . 2 ⊢ 𝑥 = 𝑥 | |
| 2 | ax-8 1518 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | |
| 3 | 1, 2 | mpi 15 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-17 1540 ax-i9 1544 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax6evr 1719 equcom 1720 equcoms 1722 ax10 1731 cbv2h 1762 cbv2w 1764 equvini 1772 equveli 1773 equsb2 1800 drex1 1812 sbcof2 1824 aev 1826 cbvexdh 1941 rext 4248 iotaval 5230 prodmodc 11743 |
| Copyright terms: Public domain | W3C validator |