ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equcomi GIF version

Theorem equcomi 1692
Description: Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equcomi (𝑥 = 𝑦𝑦 = 𝑥)

Proof of Theorem equcomi
StepHypRef Expression
1 equid 1689 . 2 𝑥 = 𝑥
2 ax-8 1492 . 2 (𝑥 = 𝑦 → (𝑥 = 𝑥𝑦 = 𝑥))
31, 2mpi 15 1 (𝑥 = 𝑦𝑦 = 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-17 1514  ax-i9 1518
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ax6evr  1693  equcom  1694  equcoms  1696  ax10  1705  cbv2h  1736  cbv2w  1738  equvini  1746  equveli  1747  equsb2  1774  drex1  1786  sbcof2  1798  aev  1800  cbvexdh  1914  rext  4193  iotaval  5164  prodmodc  11519
  Copyright terms: Public domain W3C validator