| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcomi | GIF version | ||
| Description: Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcomi | ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 1725 | . 2 ⊢ 𝑥 = 𝑥 | |
| 2 | ax-8 1528 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | |
| 3 | 1, 2 | mpi 15 | 1 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1473 ax-ie2 1518 ax-8 1528 ax-17 1550 ax-i9 1554 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax6evr 1729 equcom 1730 equcoms 1732 ax10 1741 cbv2h 1772 cbv2w 1774 equvini 1782 equveli 1783 equsb2 1810 drex1 1822 sbcof2 1834 aev 1836 cbvexdh 1951 rext 4267 iotaval 5252 prodmodc 11964 |
| Copyright terms: Public domain | W3C validator |