ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axext4 GIF version

Theorem axext4 2177
Description: A bidirectional version of Extensionality. Although this theorem "looks" like it is just a definition of equality, it requires the Axiom of Extensionality for its proof under our axiomatization. See the comments for ax-ext 2175. (Contributed by NM, 14-Nov-2008.)
Assertion
Ref Expression
axext4 (𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem axext4
StepHypRef Expression
1 elequ2 2169 . . 3 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
21alrimiv 1885 . 2 (𝑥 = 𝑦 → ∀𝑧(𝑧𝑥𝑧𝑦))
3 axext3 2176 . 2 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
42, 3impbii 126 1 (𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦))
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-14 2167  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  nninfinf  10514
  Copyright terms: Public domain W3C validator