| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > axext3 | GIF version | ||
| Description: A generalization of the Axiom of Extensionality in which 𝑥 and 𝑦 need not be distinct. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| axext3 | ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elequ2 2172 | . . . . 5 ⊢ (𝑤 = 𝑥 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥)) | |
| 2 | 1 | bibi1d 233 | . . . 4 ⊢ (𝑤 = 𝑥 → ((𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) | 
| 3 | 2 | albidv 1838 | . . 3 ⊢ (𝑤 = 𝑥 → (∀𝑧(𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) | 
| 4 | equequ1 1726 | . . 3 ⊢ (𝑤 = 𝑥 → (𝑤 = 𝑦 ↔ 𝑥 = 𝑦)) | |
| 5 | 3, 4 | imbi12d 234 | . 2 ⊢ (𝑤 = 𝑥 → ((∀𝑧(𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) → 𝑤 = 𝑦) ↔ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦))) | 
| 6 | ax-ext 2178 | . 2 ⊢ (∀𝑧(𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) → 𝑤 = 𝑦) | |
| 7 | 5, 6 | chvarv 1956 | 1 ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-14 2170 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: axext4 2180 | 
| Copyright terms: Public domain | W3C validator |