ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axext3 GIF version

Theorem axext3 2179
Description: A generalization of the Axiom of Extensionality in which 𝑥 and 𝑦 need not be distinct. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
axext3 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem axext3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elequ2 2172 . . . . 5 (𝑤 = 𝑥 → (𝑧𝑤𝑧𝑥))
21bibi1d 233 . . . 4 (𝑤 = 𝑥 → ((𝑧𝑤𝑧𝑦) ↔ (𝑧𝑥𝑧𝑦)))
32albidv 1838 . . 3 (𝑤 = 𝑥 → (∀𝑧(𝑧𝑤𝑧𝑦) ↔ ∀𝑧(𝑧𝑥𝑧𝑦)))
4 equequ1 1726 . . 3 (𝑤 = 𝑥 → (𝑤 = 𝑦𝑥 = 𝑦))
53, 4imbi12d 234 . 2 (𝑤 = 𝑥 → ((∀𝑧(𝑧𝑤𝑧𝑦) → 𝑤 = 𝑦) ↔ (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)))
6 ax-ext 2178 . 2 (∀𝑧(𝑧𝑤𝑧𝑦) → 𝑤 = 𝑦)
75, 6chvarv 1956 1 (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-14 2170  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475
This theorem is referenced by:  axext4  2180
  Copyright terms: Public domain W3C validator