| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elequ2 | GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-14 2178 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 2 | ax-14 2178 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 1730 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1471 ax-ie2 1516 ax-8 1526 ax-17 1548 ax-i9 1552 ax-14 2178 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elsb2 2183 dveel2 2185 axext3 2187 axext4 2188 bm1.1 2189 eleq2w 2266 bm1.3ii 4164 nalset 4173 zfun 4480 fv3 5598 tfrlemisucaccv 6410 tfr1onlemsucaccv 6426 tfrcllemsucaccv 6439 acfun 7318 ccfunen 7375 cc1 7376 nninfinf 10586 bdsepnft 15785 bdsepnfALT 15787 bdbm1.3ii 15789 bj-nalset 15793 bj-nnelirr 15851 nninfalllem1 15907 nninfsellemeq 15913 nninfsellemqall 15914 nninfsellemeqinf 15915 nninfomni 15918 |
| Copyright terms: Public domain | W3C validator |