ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elequ2 GIF version

Theorem elequ2 2205
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elequ2 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))

Proof of Theorem elequ2
StepHypRef Expression
1 ax-14 2203 . 2 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
2 ax-14 2203 . . 3 (𝑦 = 𝑥 → (𝑧𝑦𝑧𝑥))
32equcoms 1754 . 2 (𝑥 = 𝑦 → (𝑧𝑦𝑧𝑥))
41, 3impbid 129 1 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495  ax-ie2 1540  ax-8 1550  ax-17 1572  ax-i9 1576  ax-14 2203
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  elsb2  2208  dveel2  2210  axext3  2212  axext4  2213  bm1.1  2214  eleq2w  2291  bm1.3ii  4204  nalset  4213  zfun  4524  fv3  5649  tfrlemisucaccv  6469  tfr1onlemsucaccv  6485  tfrcllemsucaccv  6498  acfun  7385  ccfunen  7446  cc1  7447  nninfinf  10660  bdsepnft  16208  bdsepnfALT  16210  bdbm1.3ii  16212  bj-nalset  16216  bj-nnelirr  16274  nninfalllem1  16333  nninfsellemeq  16339  nninfsellemqall  16340  nninfsellemeqinf  16341  nninfomni  16344
  Copyright terms: Public domain W3C validator