ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elequ2 GIF version

Theorem elequ2 2172
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elequ2 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))

Proof of Theorem elequ2
StepHypRef Expression
1 ax-14 2170 . 2 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
2 ax-14 2170 . . 3 (𝑦 = 𝑥 → (𝑧𝑦𝑧𝑥))
32equcoms 1722 . 2 (𝑥 = 𝑦 → (𝑧𝑦𝑧𝑥))
41, 3impbid 129 1 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1463  ax-ie2 1508  ax-8 1518  ax-17 1540  ax-i9 1544  ax-14 2170
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  elsb2  2175  dveel2  2177  axext3  2179  axext4  2180  bm1.1  2181  eleq2w  2258  bm1.3ii  4155  nalset  4164  zfun  4470  fv3  5584  tfrlemisucaccv  6392  tfr1onlemsucaccv  6408  tfrcllemsucaccv  6421  acfun  7292  ccfunen  7349  cc1  7350  nninfinf  10554  bdsepnft  15641  bdsepnfALT  15643  bdbm1.3ii  15645  bj-nalset  15649  bj-nnelirr  15707  nninfalllem1  15763  nninfsellemeq  15769  nninfsellemqall  15770  nninfsellemeqinf  15771  nninfomni  15774
  Copyright terms: Public domain W3C validator