![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elequ2 | GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-14 2167 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
2 | ax-14 2167 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
3 | 2 | equcoms 1719 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie2 1505 ax-8 1515 ax-17 1537 ax-i9 1541 ax-14 2167 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: elsb2 2172 dveel2 2174 axext3 2176 axext4 2177 bm1.1 2178 eleq2w 2255 bm1.3ii 4151 nalset 4160 zfun 4466 fv3 5578 tfrlemisucaccv 6380 tfr1onlemsucaccv 6396 tfrcllemsucaccv 6409 acfun 7269 ccfunen 7326 cc1 7327 nninfinf 10517 bdsepnft 15449 bdsepnfALT 15451 bdbm1.3ii 15453 bj-nalset 15457 bj-nnelirr 15515 nninfalllem1 15568 nninfsellemeq 15574 nninfsellemqall 15575 nninfsellemeqinf 15576 nninfomni 15579 |
Copyright terms: Public domain | W3C validator |