| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elequ2 | GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-14 2179 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 2 | ax-14 2179 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 1731 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 ax-ie2 1517 ax-8 1527 ax-17 1549 ax-i9 1553 ax-14 2179 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elsb2 2184 dveel2 2186 axext3 2188 axext4 2189 bm1.1 2190 eleq2w 2267 bm1.3ii 4165 nalset 4174 zfun 4481 fv3 5599 tfrlemisucaccv 6411 tfr1onlemsucaccv 6427 tfrcllemsucaccv 6440 acfun 7319 ccfunen 7376 cc1 7377 nninfinf 10588 bdsepnft 15823 bdsepnfALT 15825 bdbm1.3ii 15827 bj-nalset 15831 bj-nnelirr 15889 nninfalllem1 15945 nninfsellemeq 15951 nninfsellemqall 15952 nninfsellemeqinf 15953 nninfomni 15956 |
| Copyright terms: Public domain | W3C validator |