Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elequ2 | GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-14 2139 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
2 | ax-14 2139 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
3 | 2 | equcoms 1696 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
4 | 1, 3 | impbid 128 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie2 1482 ax-8 1492 ax-17 1514 ax-i9 1518 ax-14 2139 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: elsb2 2144 dveel2 2146 axext3 2148 axext4 2149 bm1.1 2150 eleq2w 2228 bm1.3ii 4103 nalset 4112 zfun 4412 fv3 5509 tfrlemisucaccv 6293 tfr1onlemsucaccv 6309 tfrcllemsucaccv 6322 acfun 7163 ccfunen 7205 cc1 7206 bdsepnft 13769 bdsepnfALT 13771 bdbm1.3ii 13773 bj-nalset 13777 bj-nnelirr 13835 nninfalllem1 13888 nninfsellemeq 13894 nninfsellemqall 13895 nninfsellemeqinf 13896 nninfomni 13899 |
Copyright terms: Public domain | W3C validator |