ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elequ2 GIF version

Theorem elequ2 2181
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elequ2 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))

Proof of Theorem elequ2
StepHypRef Expression
1 ax-14 2179 . 2 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
2 ax-14 2179 . . 3 (𝑦 = 𝑥 → (𝑧𝑦𝑧𝑥))
32equcoms 1731 . 2 (𝑥 = 𝑦 → (𝑧𝑦𝑧𝑥))
41, 3impbid 129 1 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1472  ax-ie2 1517  ax-8 1527  ax-17 1549  ax-i9 1553  ax-14 2179
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  elsb2  2184  dveel2  2186  axext3  2188  axext4  2189  bm1.1  2190  eleq2w  2267  bm1.3ii  4165  nalset  4174  zfun  4481  fv3  5599  tfrlemisucaccv  6411  tfr1onlemsucaccv  6427  tfrcllemsucaccv  6440  acfun  7319  ccfunen  7376  cc1  7377  nninfinf  10588  bdsepnft  15823  bdsepnfALT  15825  bdbm1.3ii  15827  bj-nalset  15831  bj-nnelirr  15889  nninfalllem1  15945  nninfsellemeq  15951  nninfsellemqall  15952  nninfsellemeqinf  15953  nninfomni  15956
  Copyright terms: Public domain W3C validator