| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elequ2 | GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-14 2203 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 2 | ax-14 2203 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 1754 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ie2 1540 ax-8 1550 ax-17 1572 ax-i9 1576 ax-14 2203 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elsb2 2208 dveel2 2210 axext3 2212 axext4 2213 bm1.1 2214 eleq2w 2291 bm1.3ii 4204 nalset 4213 zfun 4524 fv3 5649 tfrlemisucaccv 6469 tfr1onlemsucaccv 6485 tfrcllemsucaccv 6498 acfun 7385 ccfunen 7446 cc1 7447 nninfinf 10660 bdsepnft 16208 bdsepnfALT 16210 bdbm1.3ii 16212 bj-nalset 16216 bj-nnelirr 16274 nninfalllem1 16333 nninfsellemeq 16339 nninfsellemqall 16340 nninfsellemeqinf 16341 nninfomni 16344 |
| Copyright terms: Public domain | W3C validator |