Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elequ2 | GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-14 2144 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
2 | ax-14 2144 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
3 | 2 | equcoms 1701 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
4 | 1, 3 | impbid 128 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ie2 1487 ax-8 1497 ax-17 1519 ax-i9 1523 ax-14 2144 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: elsb2 2149 dveel2 2151 axext3 2153 axext4 2154 bm1.1 2155 eleq2w 2232 bm1.3ii 4110 nalset 4119 zfun 4419 fv3 5519 tfrlemisucaccv 6304 tfr1onlemsucaccv 6320 tfrcllemsucaccv 6333 acfun 7184 ccfunen 7226 cc1 7227 bdsepnft 13922 bdsepnfALT 13924 bdbm1.3ii 13926 bj-nalset 13930 bj-nnelirr 13988 nninfalllem1 14041 nninfsellemeq 14047 nninfsellemqall 14048 nninfsellemeqinf 14049 nninfomni 14052 |
Copyright terms: Public domain | W3C validator |