| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elequ2 | GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-14 2170 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 2 | ax-14 2170 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 1722 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-17 1540 ax-i9 1544 ax-14 2170 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elsb2 2175 dveel2 2177 axext3 2179 axext4 2180 bm1.1 2181 eleq2w 2258 bm1.3ii 4155 nalset 4164 zfun 4470 fv3 5584 tfrlemisucaccv 6392 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 acfun 7292 ccfunen 7349 cc1 7350 nninfinf 10554 bdsepnft 15641 bdsepnfALT 15643 bdbm1.3ii 15645 bj-nalset 15649 bj-nnelirr 15707 nninfalllem1 15763 nninfsellemeq 15769 nninfsellemqall 15770 nninfsellemeqinf 15771 nninfomni 15774 |
| Copyright terms: Public domain | W3C validator |