| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elequ2 | GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-14 2181 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 2 | ax-14 2181 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 1732 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie2 1518 ax-8 1528 ax-17 1550 ax-i9 1554 ax-14 2181 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elsb2 2186 dveel2 2188 axext3 2190 axext4 2191 bm1.1 2192 eleq2w 2269 bm1.3ii 4181 nalset 4190 zfun 4499 fv3 5622 tfrlemisucaccv 6434 tfr1onlemsucaccv 6450 tfrcllemsucaccv 6463 acfun 7350 ccfunen 7411 cc1 7412 nninfinf 10625 bdsepnft 16022 bdsepnfALT 16024 bdbm1.3ii 16026 bj-nalset 16030 bj-nnelirr 16088 nninfalllem1 16147 nninfsellemeq 16153 nninfsellemqall 16154 nninfsellemeqinf 16155 nninfomni 16158 |
| Copyright terms: Public domain | W3C validator |