ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elequ2 GIF version

Theorem elequ2 2169
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elequ2 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))

Proof of Theorem elequ2
StepHypRef Expression
1 ax-14 2167 . 2 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
2 ax-14 2167 . . 3 (𝑦 = 𝑥 → (𝑧𝑦𝑧𝑥))
32equcoms 1719 . 2 (𝑥 = 𝑦 → (𝑧𝑦𝑧𝑥))
41, 3impbid 129 1 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460  ax-ie2 1505  ax-8 1515  ax-17 1537  ax-i9 1541  ax-14 2167
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  elsb2  2172  dveel2  2174  axext3  2176  axext4  2177  bm1.1  2178  eleq2w  2255  bm1.3ii  4151  nalset  4160  zfun  4466  fv3  5578  tfrlemisucaccv  6380  tfr1onlemsucaccv  6396  tfrcllemsucaccv  6409  acfun  7269  ccfunen  7326  cc1  7327  nninfinf  10517  bdsepnft  15449  bdsepnfALT  15451  bdbm1.3ii  15453  bj-nalset  15457  bj-nnelirr  15515  nninfalllem1  15568  nninfsellemeq  15574  nninfsellemqall  15575  nninfsellemeqinf  15576  nninfomni  15579
  Copyright terms: Public domain W3C validator