| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elequ2 | GIF version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-14 2170 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 2 | ax-14 2170 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
| 3 | 2 | equcoms 1722 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-17 1540 ax-i9 1544 ax-14 2170 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elsb2 2175 dveel2 2177 axext3 2179 axext4 2180 bm1.1 2181 eleq2w 2258 bm1.3ii 4155 nalset 4164 zfun 4470 fv3 5584 tfrlemisucaccv 6392 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 acfun 7290 ccfunen 7347 cc1 7348 nninfinf 10552 bdsepnft 15617 bdsepnfALT 15619 bdbm1.3ii 15621 bj-nalset 15625 bj-nnelirr 15683 nninfalllem1 15739 nninfsellemeq 15745 nninfsellemqall 15746 nninfsellemeqinf 15747 nninfomni 15750 |
| Copyright terms: Public domain | W3C validator |