![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elequ2 | GIF version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
elequ2 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-14 2167 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
2 | ax-14 2167 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) | |
3 | 2 | equcoms 1719 | . 2 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥)) |
4 | 1, 3 | impbid 129 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie2 1505 ax-8 1515 ax-17 1537 ax-i9 1541 ax-14 2167 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: elsb2 2172 dveel2 2174 axext3 2176 axext4 2177 bm1.1 2178 eleq2w 2255 bm1.3ii 4150 nalset 4159 zfun 4465 fv3 5577 tfrlemisucaccv 6378 tfr1onlemsucaccv 6394 tfrcllemsucaccv 6407 acfun 7267 ccfunen 7324 cc1 7325 nninfinf 10514 bdsepnft 15379 bdsepnfALT 15381 bdbm1.3ii 15383 bj-nalset 15387 bj-nnelirr 15445 nninfalllem1 15498 nninfsellemeq 15504 nninfsellemqall 15505 nninfsellemeqinf 15506 nninfomni 15509 |
Copyright terms: Public domain | W3C validator |