ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elequ2 GIF version

Theorem elequ2 2146
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elequ2 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))

Proof of Theorem elequ2
StepHypRef Expression
1 ax-14 2144 . 2 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
2 ax-14 2144 . . 3 (𝑦 = 𝑥 → (𝑧𝑦𝑧𝑥))
32equcoms 1701 . 2 (𝑥 = 𝑦 → (𝑧𝑦𝑧𝑥))
41, 3impbid 128 1 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442  ax-ie2 1487  ax-8 1497  ax-17 1519  ax-i9 1523  ax-14 2144
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  elsb2  2149  dveel2  2151  axext3  2153  axext4  2154  bm1.1  2155  eleq2w  2232  bm1.3ii  4110  nalset  4119  zfun  4419  fv3  5519  tfrlemisucaccv  6304  tfr1onlemsucaccv  6320  tfrcllemsucaccv  6333  acfun  7184  ccfunen  7226  cc1  7227  bdsepnft  13922  bdsepnfALT  13924  bdbm1.3ii  13926  bj-nalset  13930  bj-nnelirr  13988  nninfalllem1  14041  nninfsellemeq  14047  nninfsellemqall  14048  nninfsellemeqinf  14049  nninfomni  14052
  Copyright terms: Public domain W3C validator