ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axext4 Unicode version

Theorem axext4 2154
Description: A bidirectional version of Extensionality. Although this theorem "looks" like it is just a definition of equality, it requires the Axiom of Extensionality for its proof under our axiomatization. See the comments for ax-ext 2152. (Contributed by NM, 14-Nov-2008.)
Assertion
Ref Expression
axext4  |-  ( x  =  y  <->  A. z
( z  e.  x  <->  z  e.  y ) )
Distinct variable groups:    x, z    y,
z

Proof of Theorem axext4
StepHypRef Expression
1 elequ2 2146 . . 3  |-  ( x  =  y  ->  (
z  e.  x  <->  z  e.  y ) )
21alrimiv 1867 . 2  |-  ( x  =  y  ->  A. z
( z  e.  x  <->  z  e.  y ) )
3 axext3 2153 . 2  |-  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
42, 3impbii 125 1  |-  ( x  =  y  <->  A. z
( z  e.  x  <->  z  e.  y ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-14 2144  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator