Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceqir GIF version

Theorem bdceqir 15336
Description: A class equal to a bounded one is bounded. Stated with a commuted (compared with bdceqi 15335) equality in the hypothesis, to work better with definitions (𝐵 is the definiendum that one wants to prove bounded; see comment of bd0r 15317). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdceqir.min BOUNDED 𝐴
bdceqir.maj 𝐵 = 𝐴
Assertion
Ref Expression
bdceqir BOUNDED 𝐵

Proof of Theorem bdceqir
StepHypRef Expression
1 bdceqir.min . 2 BOUNDED 𝐴
2 bdceqir.maj . . 3 𝐵 = 𝐴
32eqcomi 2197 . 2 𝐴 = 𝐵
41, 3bdceqi 15335 1 BOUNDED 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1364  BOUNDED wbdc 15332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-bd0 15305
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189  df-bdc 15333
This theorem is referenced by:  bdcrab  15344  bdccsb  15352  bdcdif  15353  bdcun  15354  bdcin  15355  bdcnulALT  15358  bdcpw  15361  bdcsn  15362  bdcpr  15363  bdctp  15364  bdcuni  15368  bdcint  15369  bdciun  15370  bdciin  15371  bdcsuc  15372  bdcriota  15375
  Copyright terms: Public domain W3C validator