Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqir | GIF version |
Description: A class equal to a bounded one is bounded. Stated with a commuted (compared with bdceqi 13356) equality in the hypothesis, to work better with definitions (𝐵 is the definiendum that one wants to prove bounded; see comment of bd0r 13338). (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdceqir.min | ⊢ BOUNDED 𝐴 |
bdceqir.maj | ⊢ 𝐵 = 𝐴 |
Ref | Expression |
---|---|
bdceqir | ⊢ BOUNDED 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdceqir.min | . 2 ⊢ BOUNDED 𝐴 | |
2 | bdceqir.maj | . . 3 ⊢ 𝐵 = 𝐴 | |
3 | 2 | eqcomi 2158 | . 2 ⊢ 𝐴 = 𝐵 |
4 | 1, 3 | bdceqi 13356 | 1 ⊢ BOUNDED 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 BOUNDED wbdc 13353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-17 1503 ax-ial 1511 ax-ext 2136 ax-bd0 13326 |
This theorem depends on definitions: df-bi 116 df-cleq 2147 df-clel 2150 df-bdc 13354 |
This theorem is referenced by: bdcrab 13365 bdccsb 13373 bdcdif 13374 bdcun 13375 bdcin 13376 bdcnulALT 13379 bdcpw 13382 bdcsn 13383 bdcpr 13384 bdctp 13385 bdcuni 13389 bdcint 13390 bdciun 13391 bdciin 13392 bdcsuc 13393 bdcriota 13396 |
Copyright terms: Public domain | W3C validator |