![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqir | GIF version |
Description: A class equal to a bounded one is bounded. Stated with a commuted (compared with bdceqi 14598) equality in the hypothesis, to work better with definitions (𝐵 is the definiendum that one wants to prove bounded; see comment of bd0r 14580). (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdceqir.min | ⊢ BOUNDED 𝐴 |
bdceqir.maj | ⊢ 𝐵 = 𝐴 |
Ref | Expression |
---|---|
bdceqir | ⊢ BOUNDED 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdceqir.min | . 2 ⊢ BOUNDED 𝐴 | |
2 | bdceqir.maj | . . 3 ⊢ 𝐵 = 𝐴 | |
3 | 2 | eqcomi 2181 | . 2 ⊢ 𝐴 = 𝐵 |
4 | 1, 3 | bdceqi 14598 | 1 ⊢ BOUNDED 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 BOUNDED wbdc 14595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 ax-bd0 14568 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 df-bdc 14596 |
This theorem is referenced by: bdcrab 14607 bdccsb 14615 bdcdif 14616 bdcun 14617 bdcin 14618 bdcnulALT 14621 bdcpw 14624 bdcsn 14625 bdcpr 14626 bdctp 14627 bdcuni 14631 bdcint 14632 bdciun 14633 bdciin 14634 bdcsuc 14635 bdcriota 14638 |
Copyright terms: Public domain | W3C validator |