Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bds GIF version

Theorem bds 16238
Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 16209; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 16209. (Contributed by BJ, 19-Nov-2019.)
Hypotheses
Ref Expression
bds.bd BOUNDED 𝜑
bds.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bds BOUNDED 𝜓
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem bds
StepHypRef Expression
1 bds.bd . . . 4 BOUNDED 𝜑
21bdcab 16236 . . 3 BOUNDED {𝑥𝜑}
3 bds.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43cbvabv 2354 . . 3 {𝑥𝜑} = {𝑦𝜓}
52, 4bdceqi 16230 . 2 BOUNDED {𝑦𝜓}
65bdph 16237 1 BOUNDED 𝜓
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  {cab 2215  BOUNDED wbd 16199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16200  ax-bdsb 16209
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-bdc 16228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator