Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bds GIF version

Theorem bds 14606
Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 14577; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 14577. (Contributed by BJ, 19-Nov-2019.)
Hypotheses
Ref Expression
bds.bd BOUNDED 𝜑
bds.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bds BOUNDED 𝜓
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem bds
StepHypRef Expression
1 bds.bd . . . 4 BOUNDED 𝜑
21bdcab 14604 . . 3 BOUNDED {𝑥𝜑}
3 bds.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43cbvabv 2302 . . 3 {𝑥𝜑} = {𝑦𝜓}
52, 4bdceqi 14598 . 2 BOUNDED {𝑦𝜓}
65bdph 14605 1 BOUNDED 𝜓
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  {cab 2163  BOUNDED wbd 14567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-bd0 14568  ax-bdsb 14577
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-bdc 14596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator