| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bds | GIF version | ||
| Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 16209; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 16209. (Contributed by BJ, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| bds.bd | ⊢ BOUNDED 𝜑 |
| bds.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| bds | ⊢ BOUNDED 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bds.bd | . . . 4 ⊢ BOUNDED 𝜑 | |
| 2 | 1 | bdcab 16236 | . . 3 ⊢ BOUNDED {𝑥 ∣ 𝜑} |
| 3 | bds.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | cbvabv 2354 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| 5 | 2, 4 | bdceqi 16230 | . 2 ⊢ BOUNDED {𝑦 ∣ 𝜓} |
| 6 | 5 | bdph 16237 | 1 ⊢ BOUNDED 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 {cab 2215 BOUNDED wbd 16199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-bd0 16200 ax-bdsb 16209 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-bdc 16228 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |