Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bds | GIF version |
Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 13857; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 13857. (Contributed by BJ, 19-Nov-2019.) |
Ref | Expression |
---|---|
bds.bd | ⊢ BOUNDED 𝜑 |
bds.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
bds | ⊢ BOUNDED 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bds.bd | . . . 4 ⊢ BOUNDED 𝜑 | |
2 | 1 | bdcab 13884 | . . 3 ⊢ BOUNDED {𝑥 ∣ 𝜑} |
3 | bds.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 3 | cbvabv 2295 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
5 | 2, 4 | bdceqi 13878 | . 2 ⊢ BOUNDED {𝑦 ∣ 𝜓} |
6 | 5 | bdph 13885 | 1 ⊢ BOUNDED 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 {cab 2156 BOUNDED wbd 13847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-bd0 13848 ax-bdsb 13857 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-bdc 13876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |