![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bds | GIF version |
Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 15027; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 15027. (Contributed by BJ, 19-Nov-2019.) |
Ref | Expression |
---|---|
bds.bd | ⊢ BOUNDED 𝜑 |
bds.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
bds | ⊢ BOUNDED 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bds.bd | . . . 4 ⊢ BOUNDED 𝜑 | |
2 | 1 | bdcab 15054 | . . 3 ⊢ BOUNDED {𝑥 ∣ 𝜑} |
3 | bds.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 3 | cbvabv 2314 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
5 | 2, 4 | bdceqi 15048 | . 2 ⊢ BOUNDED {𝑦 ∣ 𝜓} |
6 | 5 | bdph 15055 | 1 ⊢ BOUNDED 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 {cab 2175 BOUNDED wbd 15017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-bd0 15018 ax-bdsb 15027 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-bdc 15046 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |