Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdelir GIF version

Theorem bdelir 13729
Description: Inference associated with df-bdc 13723. Its converse is bdeli 13728. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdelir.1 BOUNDED 𝑥𝐴
Assertion
Ref Expression
bdelir BOUNDED 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdelir
StepHypRef Expression
1 df-bdc 13723 . 2 (BOUNDED 𝐴 ↔ ∀𝑥BOUNDED 𝑥𝐴)
2 bdelir.1 . 2 BOUNDED 𝑥𝐴
31, 2mpgbir 1441 1 BOUNDED 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2136  BOUNDED wbd 13694  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1437
This theorem depends on definitions:  df-bi 116  df-bdc 13723
This theorem is referenced by:  bdcv  13730  bdcab  13731  bdcvv  13739  bdcnul  13747  bdop  13757
  Copyright terms: Public domain W3C validator