Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcv GIF version

Theorem bdcv 15578
Description: A setvar is a bounded class. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcv BOUNDED 𝑥

Proof of Theorem bdcv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-bdel 15551 . 2 BOUNDED 𝑦𝑥
21bdelir 15577 1 BOUNDED 𝑥
Colors of variables: wff set class
Syntax hints:  BOUNDED wbdc 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1463  ax-bdel 15551
This theorem depends on definitions:  df-bi 117  df-bdc 15571
This theorem is referenced by:  bdvsn  15604  bdcsuc  15610  bdeqsuc  15611  bj-inex  15637  bj-nntrans  15681  bj-omtrans  15686  bj-inf2vn  15704  bj-omex2  15707  bj-nn0sucALT  15708
  Copyright terms: Public domain W3C validator