Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcv GIF version

Theorem bdcv 13730
Description: A setvar is a bounded class. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcv BOUNDED 𝑥

Proof of Theorem bdcv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-bdel 13703 . 2 BOUNDED 𝑦𝑥
21bdelir 13729 1 BOUNDED 𝑥
Colors of variables: wff set class
Syntax hints:  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1437  ax-bdel 13703
This theorem depends on definitions:  df-bi 116  df-bdc 13723
This theorem is referenced by:  bdvsn  13756  bdcsuc  13762  bdeqsuc  13763  bj-inex  13789  bj-nntrans  13833  bj-omtrans  13838  bj-inf2vn  13856  bj-omex2  13859  bj-nn0sucALT  13860
  Copyright terms: Public domain W3C validator