Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcv GIF version

Theorem bdcv 15340
Description: A setvar is a bounded class. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcv BOUNDED 𝑥

Proof of Theorem bdcv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-bdel 15313 . 2 BOUNDED 𝑦𝑥
21bdelir 15339 1 BOUNDED 𝑥
Colors of variables: wff set class
Syntax hints:  BOUNDED wbdc 15332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460  ax-bdel 15313
This theorem depends on definitions:  df-bi 117  df-bdc 15333
This theorem is referenced by:  bdvsn  15366  bdcsuc  15372  bdeqsuc  15373  bj-inex  15399  bj-nntrans  15443  bj-omtrans  15448  bj-inf2vn  15466  bj-omex2  15469  bj-nn0sucALT  15470
  Copyright terms: Public domain W3C validator