Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdop GIF version

Theorem bdop 15980
Description: The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdop BOUNDED𝑥, 𝑦

Proof of Theorem bdop
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdvsn 15979 . . . 4 BOUNDED 𝑧 = {𝑥}
2 bdcpr 15976 . . . . . . 7 BOUNDED {𝑥, 𝑦}
32bdss 15969 . . . . . 6 BOUNDED 𝑧 ⊆ {𝑥, 𝑦}
4 ax-bdel 15926 . . . . . . . 8 BOUNDED 𝑥𝑧
5 ax-bdel 15926 . . . . . . . 8 BOUNDED 𝑦𝑧
64, 5ax-bdan 15920 . . . . . . 7 BOUNDED (𝑥𝑧𝑦𝑧)
7 vex 2776 . . . . . . . . . . 11 𝑥 ∈ V
87prid1 3744 . . . . . . . . . 10 𝑥 ∈ {𝑥, 𝑦}
9 ssel 3191 . . . . . . . . . 10 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥𝑧))
108, 9mpi 15 . . . . . . . . 9 ({𝑥, 𝑦} ⊆ 𝑧𝑥𝑧)
11 vex 2776 . . . . . . . . . . 11 𝑦 ∈ V
1211prid2 3745 . . . . . . . . . 10 𝑦 ∈ {𝑥, 𝑦}
13 ssel 3191 . . . . . . . . . 10 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦𝑧))
1412, 13mpi 15 . . . . . . . . 9 ({𝑥, 𝑦} ⊆ 𝑧𝑦𝑧)
1510, 14jca 306 . . . . . . . 8 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑥𝑧𝑦𝑧))
16 prssi 3797 . . . . . . . 8 ((𝑥𝑧𝑦𝑧) → {𝑥, 𝑦} ⊆ 𝑧)
1715, 16impbii 126 . . . . . . 7 ({𝑥, 𝑦} ⊆ 𝑧 ↔ (𝑥𝑧𝑦𝑧))
186, 17bd0r 15930 . . . . . 6 BOUNDED {𝑥, 𝑦} ⊆ 𝑧
193, 18ax-bdan 15920 . . . . 5 BOUNDED (𝑧 ⊆ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑧)
20 eqss 3212 . . . . 5 (𝑧 = {𝑥, 𝑦} ↔ (𝑧 ⊆ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑧))
2119, 20bd0r 15930 . . . 4 BOUNDED 𝑧 = {𝑥, 𝑦}
221, 21ax-bdor 15921 . . 3 BOUNDED (𝑧 = {𝑥} ∨ 𝑧 = {𝑥, 𝑦})
23 vex 2776 . . . 4 𝑧 ∈ V
2423, 7, 11elop 4288 . . 3 (𝑧 ∈ ⟨𝑥, 𝑦⟩ ↔ (𝑧 = {𝑥} ∨ 𝑧 = {𝑥, 𝑦}))
2522, 24bd0r 15930 . 2 BOUNDED 𝑧 ∈ ⟨𝑥, 𝑦
2625bdelir 15952 1 BOUNDED𝑥, 𝑦
Colors of variables: wff set class
Syntax hints:  wa 104  wo 710   = wceq 1373  wcel 2177  wss 3170  {csn 3638  {cpr 3639  cop 3641  BOUNDED wbdc 15945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-bd0 15918  ax-bdan 15920  ax-bdor 15921  ax-bdal 15923  ax-bdeq 15925  ax-bdel 15926  ax-bdsb 15927
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-bdc 15946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator