Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdop GIF version

Theorem bdop 15367
Description: The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdop BOUNDED𝑥, 𝑦

Proof of Theorem bdop
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdvsn 15366 . . . 4 BOUNDED 𝑧 = {𝑥}
2 bdcpr 15363 . . . . . . 7 BOUNDED {𝑥, 𝑦}
32bdss 15356 . . . . . 6 BOUNDED 𝑧 ⊆ {𝑥, 𝑦}
4 ax-bdel 15313 . . . . . . . 8 BOUNDED 𝑥𝑧
5 ax-bdel 15313 . . . . . . . 8 BOUNDED 𝑦𝑧
64, 5ax-bdan 15307 . . . . . . 7 BOUNDED (𝑥𝑧𝑦𝑧)
7 vex 2763 . . . . . . . . . . 11 𝑥 ∈ V
87prid1 3724 . . . . . . . . . 10 𝑥 ∈ {𝑥, 𝑦}
9 ssel 3173 . . . . . . . . . 10 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥𝑧))
108, 9mpi 15 . . . . . . . . 9 ({𝑥, 𝑦} ⊆ 𝑧𝑥𝑧)
11 vex 2763 . . . . . . . . . . 11 𝑦 ∈ V
1211prid2 3725 . . . . . . . . . 10 𝑦 ∈ {𝑥, 𝑦}
13 ssel 3173 . . . . . . . . . 10 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦𝑧))
1412, 13mpi 15 . . . . . . . . 9 ({𝑥, 𝑦} ⊆ 𝑧𝑦𝑧)
1510, 14jca 306 . . . . . . . 8 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑥𝑧𝑦𝑧))
16 prssi 3776 . . . . . . . 8 ((𝑥𝑧𝑦𝑧) → {𝑥, 𝑦} ⊆ 𝑧)
1715, 16impbii 126 . . . . . . 7 ({𝑥, 𝑦} ⊆ 𝑧 ↔ (𝑥𝑧𝑦𝑧))
186, 17bd0r 15317 . . . . . 6 BOUNDED {𝑥, 𝑦} ⊆ 𝑧
193, 18ax-bdan 15307 . . . . 5 BOUNDED (𝑧 ⊆ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑧)
20 eqss 3194 . . . . 5 (𝑧 = {𝑥, 𝑦} ↔ (𝑧 ⊆ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑧))
2119, 20bd0r 15317 . . . 4 BOUNDED 𝑧 = {𝑥, 𝑦}
221, 21ax-bdor 15308 . . 3 BOUNDED (𝑧 = {𝑥} ∨ 𝑧 = {𝑥, 𝑦})
23 vex 2763 . . . 4 𝑧 ∈ V
2423, 7, 11elop 4260 . . 3 (𝑧 ∈ ⟨𝑥, 𝑦⟩ ↔ (𝑧 = {𝑥} ∨ 𝑧 = {𝑥, 𝑦}))
2522, 24bd0r 15317 . 2 BOUNDED 𝑧 ∈ ⟨𝑥, 𝑦
2625bdelir 15339 1 BOUNDED𝑥, 𝑦
Colors of variables: wff set class
Syntax hints:  wa 104  wo 709   = wceq 1364  wcel 2164  wss 3153  {csn 3618  {cpr 3619  cop 3621  BOUNDED wbdc 15332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-bd0 15305  ax-bdan 15307  ax-bdor 15308  ax-bdal 15310  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-bdc 15333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator