Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdop GIF version

Theorem bdop 13244
Description: The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdop BOUNDED𝑥, 𝑦

Proof of Theorem bdop
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdvsn 13243 . . . 4 BOUNDED 𝑧 = {𝑥}
2 bdcpr 13240 . . . . . . 7 BOUNDED {𝑥, 𝑦}
32bdss 13233 . . . . . 6 BOUNDED 𝑧 ⊆ {𝑥, 𝑦}
4 ax-bdel 13190 . . . . . . . 8 BOUNDED 𝑥𝑧
5 ax-bdel 13190 . . . . . . . 8 BOUNDED 𝑦𝑧
64, 5ax-bdan 13184 . . . . . . 7 BOUNDED (𝑥𝑧𝑦𝑧)
7 vex 2692 . . . . . . . . . . 11 𝑥 ∈ V
87prid1 3637 . . . . . . . . . 10 𝑥 ∈ {𝑥, 𝑦}
9 ssel 3096 . . . . . . . . . 10 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥𝑧))
108, 9mpi 15 . . . . . . . . 9 ({𝑥, 𝑦} ⊆ 𝑧𝑥𝑧)
11 vex 2692 . . . . . . . . . . 11 𝑦 ∈ V
1211prid2 3638 . . . . . . . . . 10 𝑦 ∈ {𝑥, 𝑦}
13 ssel 3096 . . . . . . . . . 10 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦𝑧))
1412, 13mpi 15 . . . . . . . . 9 ({𝑥, 𝑦} ⊆ 𝑧𝑦𝑧)
1510, 14jca 304 . . . . . . . 8 ({𝑥, 𝑦} ⊆ 𝑧 → (𝑥𝑧𝑦𝑧))
16 prssi 3686 . . . . . . . 8 ((𝑥𝑧𝑦𝑧) → {𝑥, 𝑦} ⊆ 𝑧)
1715, 16impbii 125 . . . . . . 7 ({𝑥, 𝑦} ⊆ 𝑧 ↔ (𝑥𝑧𝑦𝑧))
186, 17bd0r 13194 . . . . . 6 BOUNDED {𝑥, 𝑦} ⊆ 𝑧
193, 18ax-bdan 13184 . . . . 5 BOUNDED (𝑧 ⊆ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑧)
20 eqss 3117 . . . . 5 (𝑧 = {𝑥, 𝑦} ↔ (𝑧 ⊆ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑧))
2119, 20bd0r 13194 . . . 4 BOUNDED 𝑧 = {𝑥, 𝑦}
221, 21ax-bdor 13185 . . 3 BOUNDED (𝑧 = {𝑥} ∨ 𝑧 = {𝑥, 𝑦})
23 vex 2692 . . . 4 𝑧 ∈ V
2423, 7, 11elop 4161 . . 3 (𝑧 ∈ ⟨𝑥, 𝑦⟩ ↔ (𝑧 = {𝑥} ∨ 𝑧 = {𝑥, 𝑦}))
2522, 24bd0r 13194 . 2 BOUNDED 𝑧 ∈ ⟨𝑥, 𝑦
2625bdelir 13216 1 BOUNDED𝑥, 𝑦
Colors of variables: wff set class
Syntax hints:  wa 103  wo 698   = wceq 1332  wcel 1481  wss 3076  {csn 3532  {cpr 3533  cop 3535  BOUNDED wbdc 13209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-bd0 13182  ax-bdan 13184  ax-bdor 13185  ax-bdal 13187  ax-bdeq 13189  ax-bdel 13190  ax-bdsb 13191
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-sn 3538  df-pr 3539  df-op 3541  df-bdc 13210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator