![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpdan | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 23-May-1999.) (Proof shortened by Wolf Lammen, 22-Nov-2012.) |
Ref | Expression |
---|---|
mpdan.1 | ⊢ (𝜑 → 𝜓) |
mpdan.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
mpdan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | mpdan.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | mpdan.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
4 | 1, 2, 3 | syl2anc 406 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 107 |
This theorem is referenced by: mpidan 417 mpan2 419 mpjaodan 770 mpd3an3 1299 eueq2dc 2826 csbiegf 3009 difsnb 3629 reusv3i 4340 fvmpt3 5454 ffvelrnd 5510 fnressn 5560 fliftel1 5649 f1oiso2 5682 riota5f 5708 1stvalg 5994 2ndvalg 5995 brtpos2 6102 tfrlemibxssdm 6178 dom2lem 6620 php5 6705 nnfi 6719 xpfi 6771 supisoti 6849 ordiso2 6872 omp1eomlem 6931 onenon 6990 oncardval 6992 cardonle 6993 recidnq 7149 archnqq 7173 prarloclemarch2 7175 recexprlem1ssl 7389 recexprlem1ssu 7390 recexprlemss1l 7391 recexprlemss1u 7392 recexprlemex 7393 0idsr 7510 lep1 8513 suprlubex 8620 uz11 9250 xnegid 9535 eluzfz2 9705 fzsuc 9742 fzsuc2 9752 fzp1disj 9753 fzneuz 9774 fzp1nel 9777 exbtwnzlemex 9920 flhalf 9968 modqval 9990 frec2uzsucd 10067 frecuzrdgsuc 10080 uzsinds 10108 seq3p1 10128 seqp1cd 10132 expubnd 10243 iexpcyc 10290 binom2sub1 10299 hashennn 10419 shftfval 10486 shftcan1 10499 cjval 10510 reval 10514 imval 10515 cjmulrcl 10552 addcj 10556 absval 10665 resqrexlemdecn 10676 resqrexlemnmsq 10681 resqrexlemnm 10682 absneg 10714 abscj 10716 sqabsadd 10719 sqabssub 10720 ltabs 10751 dfabsmax 10881 negfi 10891 fsum3 11048 trirecip 11162 efval 11218 ege2le3 11228 efcan 11233 sinval 11260 cosval 11261 efi4p 11275 resin4p 11276 recos4p 11277 sincossq 11306 eirraplem 11331 iddvds 11354 1dvds 11355 bezoutlemstep 11531 coprmgcdb 11615 1idssfct 11642 exprmfct 11664 oddpwdclemdc 11696 phival 11734 setsn0fun 11839 cldval 12111 ntrfval 12112 clsfval 12113 neifval 12152 tx1cn 12280 ismet 12333 isxmet 12334 divcnap 12541 dvaddxxbr 12620 dvmulxxbr 12621 bj-findis 12869 |
Copyright terms: Public domain | W3C validator |