Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpdan | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 23-May-1999.) (Proof shortened by Wolf Lammen, 22-Nov-2012.) |
Ref | Expression |
---|---|
mpdan.1 | ⊢ (𝜑 → 𝜓) |
mpdan.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
mpdan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | mpdan.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | mpdan.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: mpidan 420 mpan2 422 mpjaodan 788 mpd3an3 1328 eueq2dc 2899 csbiegf 3088 difsnb 3716 reusv3i 4437 fvmpt3 5565 ffvelrnd 5621 fnressn 5671 fliftel1 5762 f1oiso2 5795 riota5f 5822 1stvalg 6110 2ndvalg 6111 brtpos2 6219 tfrlemibxssdm 6295 dom2lem 6738 php5 6824 nnfi 6838 xpfi 6895 supisoti 6975 ordiso2 7000 omp1eomlem 7059 nnnninfeq2 7093 onenon 7140 oncardval 7142 cardonle 7143 recidnq 7334 archnqq 7358 prarloclemarch2 7360 recexprlem1ssl 7574 recexprlem1ssu 7575 recexprlemss1l 7576 recexprlemss1u 7577 recexprlemex 7578 0idsr 7708 lep1 8740 suprlubex 8847 uz11 9488 xnegid 9795 eluzfz2 9967 fzsuc 10004 fzsuc2 10014 fzp1disj 10015 fzneuz 10036 fzp1nel 10039 exbtwnzlemex 10185 flhalf 10237 modqval 10259 frec2uzsucd 10336 frecuzrdgsuc 10349 uzsinds 10377 seq3p1 10397 seqp1cd 10401 expubnd 10512 iexpcyc 10559 binom2sub1 10569 hashennn 10693 shftfval 10763 shftcan1 10776 cjval 10787 reval 10791 imval 10792 cjmulrcl 10829 addcj 10833 absval 10943 resqrexlemdecn 10954 resqrexlemnmsq 10959 resqrexlemnm 10960 absneg 10992 abscj 10994 sqabsadd 10997 sqabssub 10998 ltabs 11029 dfabsmax 11159 negfi 11169 fsum3 11328 trirecip 11442 fprodseq 11524 efval 11602 ege2le3 11612 efcan 11617 sinval 11643 cosval 11644 efi4p 11658 resin4p 11659 recos4p 11660 sincossq 11689 eirraplem 11717 iddvds 11744 1dvds 11745 bezoutlemstep 11930 coprmgcdb 12020 1idssfct 12047 exprmfct 12070 oddpwdclemdc 12105 phival 12145 odzphi 12178 oddprmdvds 12284 setsn0fun 12431 cldval 12739 ntrfval 12740 clsfval 12741 neifval 12780 tx1cn 12909 ismet 12984 isxmet 12985 divcnap 13195 dvaddxxbr 13305 dvmulxxbr 13306 dvcoapbr 13311 1lgs 13584 lgs1 13585 bj-charfun 13689 bj-findis 13861 |
Copyright terms: Public domain | W3C validator |