![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dflidl2 | GIF version |
Description: Alternate (the usual textbook) definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.) |
Ref | Expression |
---|---|
dflidl2.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
dflidl2.b | ⊢ 𝐵 = (Base‘𝑅) |
dflidl2.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
dflidl2 | ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflidl2.u | . . 3 ⊢ 𝑈 = (LIdeal‘𝑅) | |
2 | 1 | lidlsubg 13819 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (SubGrp‘𝑅)) |
3 | ringrng 13407 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Rng) | |
4 | dflidl2.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
5 | dflidl2.t | . . . 4 ⊢ · = (.r‘𝑅) | |
6 | 1, 4, 5 | dflidl2rng 13814 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) |
7 | 3, 6 | sylan 283 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) |
8 | 2, 7 | biadanid 614 | 1 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 .rcmulr 12593 SubGrpcsubg 13123 Rngcrng 13303 Ringcrg 13367 LIdealclidl 13800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-pre-ltirr 7954 ax-pre-lttrn 7956 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-pnf 8025 df-mnf 8026 df-ltxr 8028 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-5 9012 df-6 9013 df-7 9014 df-8 9015 df-ndx 12518 df-slot 12519 df-base 12521 df-sets 12522 df-iress 12523 df-plusg 12605 df-mulr 12606 df-sca 12608 df-vsca 12609 df-ip 12610 df-0g 12766 df-mgm 12835 df-sgrp 12880 df-mnd 12893 df-grp 12963 df-minusg 12964 df-sbg 12965 df-subg 13126 df-cmn 13242 df-abl 13243 df-mgp 13292 df-rng 13304 df-ur 13331 df-ring 13369 df-subrg 13583 df-lmod 13622 df-lssm 13686 df-sra 13768 df-rgmod 13769 df-lidl 13802 |
This theorem is referenced by: isridl 13836 |
Copyright terms: Public domain | W3C validator |