| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbieh | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. New proofs should use sbie 1805 instead. (Contributed by NM, 30-Jun-1994.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbieh.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
| sbieh.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbieh | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | hbth 1477 | . . 3 ⊢ ((𝜑 → 𝜑) → ∀𝑥(𝜑 → 𝜑)) |
| 3 | sbieh.1 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ ((𝜑 → 𝜑) → (𝜓 → ∀𝑥𝜓)) |
| 5 | sbieh.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | a1i 9 | . . 3 ⊢ ((𝜑 → 𝜑) → (𝑥 = 𝑦 → (𝜑 ↔ 𝜓))) |
| 7 | 2, 4, 6 | sbiedh 1801 | . 2 ⊢ ((𝜑 → 𝜑) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| 8 | 1, 7 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: sbie 1805 sbco2vlem 1963 equsb3lem 1969 sbco2yz 1982 dvelimf 2034 elsb1 2174 elsb2 2175 |
| Copyright terms: Public domain | W3C validator |