ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbieh GIF version

Theorem sbieh 1778
Description: Conversion of implicit substitution to explicit substitution. New proofs should use sbie 1779 instead. (Contributed by NM, 30-Jun-1994.) (New usage is discouraged.)
Hypotheses
Ref Expression
sbieh.1 (𝜓 → ∀𝑥𝜓)
sbieh.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbieh ([𝑦 / 𝑥]𝜑𝜓)

Proof of Theorem sbieh
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
21hbth 1451 . . 3 ((𝜑𝜑) → ∀𝑥(𝜑𝜑))
3 sbieh.1 . . . 4 (𝜓 → ∀𝑥𝜓)
43a1i 9 . . 3 ((𝜑𝜑) → (𝜓 → ∀𝑥𝜓))
5 sbieh.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
65a1i 9 . . 3 ((𝜑𝜑) → (𝑥 = 𝑦 → (𝜑𝜓)))
72, 4, 6sbiedh 1775 . 2 ((𝜑𝜑) → ([𝑦 / 𝑥]𝜑𝜓))
81, 7ax-mp 5 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  sbie  1779  sbco2vlem  1932  equsb3lem  1938  sbco2yz  1951  dvelimf  2003  elsb1  2143  elsb2  2144
  Copyright terms: Public domain W3C validator