Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqdi | GIF version |
Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breqdi.1 | ⊢ (𝜑 → 𝐶𝐴𝐷) |
Ref | Expression |
---|---|
breqdi | ⊢ (𝜑 → 𝐶𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqdi.1 | . 2 ⊢ (𝜑 → 𝐶𝐴𝐷) | |
2 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breqd 3992 | . 2 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
4 | 1, 3 | mpbid 146 | 1 ⊢ (𝜑 → 𝐶𝐵𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 class class class wbr 3981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-br 3982 |
This theorem is referenced by: dvef 13288 |
Copyright terms: Public domain | W3C validator |