| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqdi | GIF version | ||
| Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
| Ref | Expression |
|---|---|
| breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| breqdi.1 | ⊢ (𝜑 → 𝐶𝐴𝐷) |
| Ref | Expression |
|---|---|
| breqdi | ⊢ (𝜑 → 𝐶𝐵𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqdi.1 | . 2 ⊢ (𝜑 → 𝐶𝐴𝐷) | |
| 2 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breqd 4044 | . 2 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝐶𝐵𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 class class class wbr 4033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-br 4034 |
| This theorem is referenced by: dvef 14963 |
| Copyright terms: Public domain | W3C validator |