Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqan12d | GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | breq12 3994 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
4 | 1, 2, 3 | syl2an 287 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: breqan12rd 4006 sosng 4684 isoresbr 5788 isoid 5789 isores3 5794 isoini2 5798 ofrfval 6069 oviec 6619 enqbreq2 7319 ltresr2 7802 axpre-ltadd 7848 leltadd 8366 xltneg 9793 lt2sq 10549 le2sq 10550 cnreim 10942 sqrtle 11000 sqrtlt 11001 absext 11027 reefiso 13492 logltb 13589 |
Copyright terms: Public domain | W3C validator |