ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvef GIF version

Theorem dvef 15199
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef (ℂ D exp) = exp

Proof of Theorem dvef
Dummy variables 𝑥 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 8049 . . . . . . . 8 ℂ ∈ V
2 eff 11974 . . . . . . . 8 exp:ℂ⟶ℂ
3 fpmg 6761 . . . . . . . 8 ((ℂ ∈ V ∧ ℂ ∈ V ∧ exp:ℂ⟶ℂ) → exp ∈ (ℂ ↑pm ℂ))
41, 1, 2, 3mp3an 1350 . . . . . . 7 exp ∈ (ℂ ↑pm ℂ)
5 dvfcnpm 15162 . . . . . . 7 (exp ∈ (ℂ ↑pm ℂ) → (ℂ D exp):dom (ℂ D exp)⟶ℂ)
64, 5ax-mp 5 . . . . . 6 (ℂ D exp):dom (ℂ D exp)⟶ℂ
7 ffun 5428 . . . . . 6 ((ℂ D exp):dom (ℂ D exp)⟶ℂ → Fun (ℂ D exp))
86, 7ax-mp 5 . . . . 5 Fun (ℂ D exp)
9 subcl 8271 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
109ancoms 268 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
11 efadd 11986 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑧𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
1210, 11syldan 282 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
13 pncan3 8280 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 + (𝑧𝑥)) = 𝑧)
1413fveq2d 5580 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = (exp‘𝑧))
1512, 14eqtr3d 2240 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((exp‘𝑥) · (exp‘(𝑧𝑥))) = (exp‘𝑧))
1615mpteq2dva 4134 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
171a1i 9 . . . . . . . . 9 (𝑥 ∈ ℂ → ℂ ∈ V)
18 efcl 11975 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
1918adantr 276 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
20 efcl 11975 . . . . . . . . . 10 ((𝑧𝑥) ∈ ℂ → (exp‘(𝑧𝑥)) ∈ ℂ)
2110, 20syl 14 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ ℂ)
22 fconstmpt 4722 . . . . . . . . . 10 (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥))
2322a1i 9 . . . . . . . . 9 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥)))
24 eqidd 2206 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
2517, 19, 21, 23, 24offval2 6174 . . . . . . . 8 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))))
262a1i 9 . . . . . . . . 9 (𝑥 ∈ ℂ → exp:ℂ⟶ℂ)
2726feqmptd 5632 . . . . . . . 8 (𝑥 ∈ ℂ → exp = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
2816, 25, 273eqtr4d 2248 . . . . . . 7 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = exp)
2928oveq2d 5960 . . . . . 6 (𝑥 ∈ ℂ → (ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))) = (ℂ D exp))
30 fconstg 5472 . . . . . . . . . 10 ((exp‘𝑥) ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
3118, 30syl 14 . . . . . . . . 9 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
3218snssd 3778 . . . . . . . . 9 (𝑥 ∈ ℂ → {(exp‘𝑥)} ⊆ ℂ)
3331, 32fssd 5438 . . . . . . . 8 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶ℂ)
34 ssidd 3214 . . . . . . . 8 (𝑥 ∈ ℂ → ℂ ⊆ ℂ)
3521fmpttd 5735 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))):ℂ⟶ℂ)
36 c0ex 8066 . . . . . . . . . . . 12 0 ∈ V
3736snid 3664 . . . . . . . . . . 11 0 ∈ {0}
38 opelxpi 4707 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 0 ∈ {0}) → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
3937, 38mpan2 425 . . . . . . . . . 10 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
40 dvconst 15166 . . . . . . . . . . 11 ((exp‘𝑥) ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
4118, 40syl 14 . . . . . . . . . 10 (𝑥 ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
4239, 41eleqtrrd 2285 . . . . . . . . 9 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
43 df-br 4045 . . . . . . . . 9 (𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0 ↔ ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
4442, 43sylibr 134 . . . . . . . 8 (𝑥 ∈ ℂ → 𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0)
4526, 10cofmpt 5749 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
4645oveq2d 5960 . . . . . . . . 9 (𝑥 ∈ ℂ → (ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥)))) = (ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))
4710fmpttd 5735 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝑧𝑥)):ℂ⟶ℂ)
48 simpr 110 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → 𝑢 ∈ ℂ)
4948adantr 276 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑢 ∈ ℂ)
50 simpl 109 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → 𝑥 ∈ ℂ)
5150adantr 276 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑥 ∈ ℂ)
52 simpr 110 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑢 # 𝑥)
5349, 51, 52subap0d 8717 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → (𝑢𝑥) # 0)
54 eqid 2205 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℂ ↦ (𝑧𝑥)) = (𝑧 ∈ ℂ ↦ (𝑧𝑥))
55 oveq1 5951 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑢 → (𝑧𝑥) = (𝑢𝑥))
56 subcl 8271 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑢𝑥) ∈ ℂ)
5756ancoms 268 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢𝑥) ∈ ℂ)
5854, 55, 48, 57fvmptd3 5673 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) = (𝑢𝑥))
59 oveq1 5951 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → (𝑧𝑥) = (𝑥𝑥))
60 id 19 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
6160, 60subcld 8383 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (𝑥𝑥) ∈ ℂ)
6261adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑥𝑥) ∈ ℂ)
6354, 59, 50, 62fvmptd3 5673 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = (𝑥𝑥))
64 subid 8291 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (𝑥𝑥) = 0)
6564adantr 276 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑥𝑥) = 0)
6663, 65eqtrd 2238 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = 0)
6758, 66breq12d 4057 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) ↔ (𝑢𝑥) # 0))
6867adantr 276 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → (((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) ↔ (𝑢𝑥) # 0))
6953, 68mpbird 167 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥))
7069ex 115 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢 # 𝑥 → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)))
7170ralrimiva 2579 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ∀𝑢 ∈ ℂ (𝑢 # 𝑥 → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)))
7254, 59, 60, 61fvmptd3 5673 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = (𝑥𝑥))
7372, 64eqtrd 2238 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = 0)
74 dveflem 15198 . . . . . . . . . . . 12 0(ℂ D exp)1
7573, 74eqbrtrdi 4083 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)(ℂ D exp)1)
76 1ex 8067 . . . . . . . . . . . . . . 15 1 ∈ V
7776snid 3664 . . . . . . . . . . . . . 14 1 ∈ {1}
78 opelxpi 4707 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 1 ∈ {1}) → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
7977, 78mpan2 425 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
80 simpr 110 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
81 1cnd 8088 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
82 dvmptidcn 15186 . . . . . . . . . . . . . . . 16 (ℂ D (𝑧 ∈ ℂ ↦ 𝑧)) = (𝑧 ∈ ℂ ↦ 1)
8382a1i 9 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑧)) = (𝑧 ∈ ℂ ↦ 1))
84 simpl 109 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ)
85 0cnd 8065 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 0 ∈ ℂ)
8660dvmptccn 15187 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑥)) = (𝑧 ∈ ℂ ↦ 0))
8780, 81, 83, 84, 85, 86dvmptsubcn 15195 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (1 − 0)))
88 1m0e1 9149 . . . . . . . . . . . . . . . 16 (1 − 0) = 1
8988mpteq2i 4131 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℂ ↦ (1 − 0)) = (𝑧 ∈ ℂ ↦ 1)
90 fconstmpt 4722 . . . . . . . . . . . . . . 15 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
9189, 90eqtr4i 2229 . . . . . . . . . . . . . 14 (𝑧 ∈ ℂ ↦ (1 − 0)) = (ℂ × {1})
9287, 91eqtrdi 2254 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (ℂ × {1}))
9379, 92eleqtrrd 2285 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
94 df-br 4045 . . . . . . . . . . . 12 (𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1 ↔ ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
9593, 94sylibr 134 . . . . . . . . . . 11 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1)
96 eqid 2205 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
9726, 34, 47, 34, 71, 34, 34, 75, 95, 96dvcoapbr 15179 . . . . . . . . . 10 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))(1 · 1))
98 1t1e1 9189 . . . . . . . . . 10 (1 · 1) = 1
9997, 98breqtrdi 4085 . . . . . . . . 9 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))1)
10046, 99breqdi 4059 . . . . . . . 8 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))1)
10133, 34, 35, 34, 44, 100, 96dvmulxxbr 15174 . . . . . . 7 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))))
10235, 60ffvelcdmd 5716 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥) ∈ ℂ)
103102mul02d 8464 . . . . . . . . 9 (𝑥 ∈ ℂ → (0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) = 0)
104 fvconst2g 5798 . . . . . . . . . . . 12 (((exp‘𝑥) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥))
10518, 104mpancom 422 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥))
106105oveq2d 5960 . . . . . . . . . 10 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (1 · (exp‘𝑥)))
10718mulid2d 8091 . . . . . . . . . 10 (𝑥 ∈ ℂ → (1 · (exp‘𝑥)) = (exp‘𝑥))
108106, 107eqtrd 2238 . . . . . . . . 9 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (exp‘𝑥))
109103, 108oveq12d 5962 . . . . . . . 8 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (0 + (exp‘𝑥)))
11018addlidd 8222 . . . . . . . 8 (𝑥 ∈ ℂ → (0 + (exp‘𝑥)) = (exp‘𝑥))
111109, 110eqtrd 2238 . . . . . . 7 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (exp‘𝑥))
112101, 111breqtrd 4070 . . . . . 6 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))(exp‘𝑥))
11329, 112breqdi 4059 . . . . 5 (𝑥 ∈ ℂ → 𝑥(ℂ D exp)(exp‘𝑥))
114 funbrfv 5617 . . . . 5 (Fun (ℂ D exp) → (𝑥(ℂ D exp)(exp‘𝑥) → ((ℂ D exp)‘𝑥) = (exp‘𝑥)))
1158, 113, 114mpsyl 65 . . . 4 (𝑥 ∈ ℂ → ((ℂ D exp)‘𝑥) = (exp‘𝑥))
116115mpteq2ia 4130 . . 3 (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
117 ssid 3213 . . . . . . . . 9 ℂ ⊆ ℂ
118 dvbsssg 15158 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ exp ∈ (ℂ ↑pm ℂ)) → dom (ℂ D exp) ⊆ ℂ)
119117, 4, 118mp2an 426 . . . . . . . 8 dom (ℂ D exp) ⊆ ℂ
120 breldmg 4884 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (exp‘𝑥) ∈ ℂ ∧ 𝑥(ℂ D exp)(exp‘𝑥)) → 𝑥 ∈ dom (ℂ D exp))
12118, 113, 120mpd3an23 1352 . . . . . . . . 9 (𝑥 ∈ ℂ → 𝑥 ∈ dom (ℂ D exp))
122121ssriv 3197 . . . . . . . 8 ℂ ⊆ dom (ℂ D exp)
123119, 122eqssi 3209 . . . . . . 7 dom (ℂ D exp) = ℂ
124123feq2i 5419 . . . . . 6 ((ℂ D exp):dom (ℂ D exp)⟶ℂ ↔ (ℂ D exp):ℂ⟶ℂ)
1256, 124mpbi 145 . . . . 5 (ℂ D exp):ℂ⟶ℂ
126125a1i 9 . . . 4 (⊤ → (ℂ D exp):ℂ⟶ℂ)
127126feqmptd 5632 . . 3 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)))
1282a1i 9 . . . 4 (⊤ → exp:ℂ⟶ℂ)
129128feqmptd 5632 . . 3 (⊤ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
130116, 127, 1293eqtr4a 2264 . 2 (⊤ → (ℂ D exp) = exp)
131130mptru 1382 1 (ℂ D exp) = exp
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wtru 1374  wcel 2176  Vcvv 2772  wss 3166  {csn 3633  cop 3636   class class class wbr 4044  cmpt 4105   × cxp 4673  dom cdm 4675  ccom 4679  Fun wfun 5265  wf 5267  cfv 5271  (class class class)co 5944  𝑓 cof 6156  pm cpm 6736  cc 7923  0cc0 7925  1c1 7926   + caddc 7928   · cmul 7930  cmin 8243   # cap 8654  abscabs 11308  expce 11953  MetOpencmopn 14303   D cdv 15127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045  ax-addf 8047  ax-mulf 8048
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-map 6737  df-pm 6738  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-ico 10016  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-fac 10871  df-bc 10893  df-ihash 10921  df-shft 11126  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665  df-ef 11959  df-rest 13073  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-ntr 14568  df-cn 14660  df-cnp 14661  df-tx 14725  df-cncf 15043  df-limced 15128  df-dvap 15129
This theorem is referenced by:  efcn  15240
  Copyright terms: Public domain W3C validator