ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvef GIF version

Theorem dvef 12896
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef (ℂ D exp) = exp

Proof of Theorem dvef
Dummy variables 𝑥 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 7768 . . . . . . . 8 ℂ ∈ V
2 eff 11406 . . . . . . . 8 exp:ℂ⟶ℂ
3 fpmg 6576 . . . . . . . 8 ((ℂ ∈ V ∧ ℂ ∈ V ∧ exp:ℂ⟶ℂ) → exp ∈ (ℂ ↑pm ℂ))
41, 1, 2, 3mp3an 1316 . . . . . . 7 exp ∈ (ℂ ↑pm ℂ)
5 dvfcnpm 12867 . . . . . . 7 (exp ∈ (ℂ ↑pm ℂ) → (ℂ D exp):dom (ℂ D exp)⟶ℂ)
64, 5ax-mp 5 . . . . . 6 (ℂ D exp):dom (ℂ D exp)⟶ℂ
7 ffun 5283 . . . . . 6 ((ℂ D exp):dom (ℂ D exp)⟶ℂ → Fun (ℂ D exp))
86, 7ax-mp 5 . . . . 5 Fun (ℂ D exp)
9 subcl 7985 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
109ancoms 266 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
11 efadd 11418 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑧𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
1210, 11syldan 280 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
13 pncan3 7994 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 + (𝑧𝑥)) = 𝑧)
1413fveq2d 5433 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = (exp‘𝑧))
1512, 14eqtr3d 2175 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((exp‘𝑥) · (exp‘(𝑧𝑥))) = (exp‘𝑧))
1615mpteq2dva 4026 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
171a1i 9 . . . . . . . . 9 (𝑥 ∈ ℂ → ℂ ∈ V)
18 efcl 11407 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
1918adantr 274 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
20 efcl 11407 . . . . . . . . . 10 ((𝑧𝑥) ∈ ℂ → (exp‘(𝑧𝑥)) ∈ ℂ)
2110, 20syl 14 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ ℂ)
22 fconstmpt 4594 . . . . . . . . . 10 (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥))
2322a1i 9 . . . . . . . . 9 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥)))
24 eqidd 2141 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
2517, 19, 21, 23, 24offval2 6005 . . . . . . . 8 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))))
262a1i 9 . . . . . . . . 9 (𝑥 ∈ ℂ → exp:ℂ⟶ℂ)
2726feqmptd 5482 . . . . . . . 8 (𝑥 ∈ ℂ → exp = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
2816, 25, 273eqtr4d 2183 . . . . . . 7 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = exp)
2928oveq2d 5798 . . . . . 6 (𝑥 ∈ ℂ → (ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))) = (ℂ D exp))
30 fconstg 5327 . . . . . . . . . 10 ((exp‘𝑥) ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
3118, 30syl 14 . . . . . . . . 9 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
3218snssd 3673 . . . . . . . . 9 (𝑥 ∈ ℂ → {(exp‘𝑥)} ⊆ ℂ)
3331, 32fssd 5293 . . . . . . . 8 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶ℂ)
34 ssidd 3123 . . . . . . . 8 (𝑥 ∈ ℂ → ℂ ⊆ ℂ)
3521fmpttd 5583 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))):ℂ⟶ℂ)
36 c0ex 7784 . . . . . . . . . . . 12 0 ∈ V
3736snid 3563 . . . . . . . . . . 11 0 ∈ {0}
38 opelxpi 4579 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 0 ∈ {0}) → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
3937, 38mpan2 422 . . . . . . . . . 10 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
40 dvconst 12869 . . . . . . . . . . 11 ((exp‘𝑥) ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
4118, 40syl 14 . . . . . . . . . 10 (𝑥 ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
4239, 41eleqtrrd 2220 . . . . . . . . 9 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
43 df-br 3938 . . . . . . . . 9 (𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0 ↔ ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
4442, 43sylibr 133 . . . . . . . 8 (𝑥 ∈ ℂ → 𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0)
4526, 10cofmpt 5597 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
4645oveq2d 5798 . . . . . . . . 9 (𝑥 ∈ ℂ → (ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥)))) = (ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))
4710fmpttd 5583 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝑧𝑥)):ℂ⟶ℂ)
48 simpr 109 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → 𝑢 ∈ ℂ)
4948adantr 274 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑢 ∈ ℂ)
50 simpl 108 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → 𝑥 ∈ ℂ)
5150adantr 274 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑥 ∈ ℂ)
52 simpr 109 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑢 # 𝑥)
5349, 51, 52subap0d 8430 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → (𝑢𝑥) # 0)
54 eqid 2140 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℂ ↦ (𝑧𝑥)) = (𝑧 ∈ ℂ ↦ (𝑧𝑥))
55 oveq1 5789 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑢 → (𝑧𝑥) = (𝑢𝑥))
56 subcl 7985 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑢𝑥) ∈ ℂ)
5756ancoms 266 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢𝑥) ∈ ℂ)
5854, 55, 48, 57fvmptd3 5522 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) = (𝑢𝑥))
59 oveq1 5789 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → (𝑧𝑥) = (𝑥𝑥))
60 id 19 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
6160, 60subcld 8097 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (𝑥𝑥) ∈ ℂ)
6261adantr 274 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑥𝑥) ∈ ℂ)
6354, 59, 50, 62fvmptd3 5522 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = (𝑥𝑥))
64 subid 8005 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (𝑥𝑥) = 0)
6564adantr 274 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑥𝑥) = 0)
6663, 65eqtrd 2173 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = 0)
6758, 66breq12d 3950 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) ↔ (𝑢𝑥) # 0))
6867adantr 274 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → (((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) ↔ (𝑢𝑥) # 0))
6953, 68mpbird 166 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥))
7069ex 114 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢 # 𝑥 → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)))
7170ralrimiva 2508 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ∀𝑢 ∈ ℂ (𝑢 # 𝑥 → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)))
7254, 59, 60, 61fvmptd3 5522 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = (𝑥𝑥))
7372, 64eqtrd 2173 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = 0)
74 dveflem 12895 . . . . . . . . . . . 12 0(ℂ D exp)1
7573, 74eqbrtrdi 3975 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)(ℂ D exp)1)
76 1ex 7785 . . . . . . . . . . . . . . 15 1 ∈ V
7776snid 3563 . . . . . . . . . . . . . 14 1 ∈ {1}
78 opelxpi 4579 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 1 ∈ {1}) → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
7977, 78mpan2 422 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
80 simpr 109 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
81 1cnd 7806 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
82 dvmptidcn 12886 . . . . . . . . . . . . . . . 16 (ℂ D (𝑧 ∈ ℂ ↦ 𝑧)) = (𝑧 ∈ ℂ ↦ 1)
8382a1i 9 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑧)) = (𝑧 ∈ ℂ ↦ 1))
84 simpl 108 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ)
85 0cnd 7783 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 0 ∈ ℂ)
8660dvmptccn 12887 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑥)) = (𝑧 ∈ ℂ ↦ 0))
8780, 81, 83, 84, 85, 86dvmptsubcn 12893 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (1 − 0)))
88 1m0e1 8857 . . . . . . . . . . . . . . . 16 (1 − 0) = 1
8988mpteq2i 4023 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℂ ↦ (1 − 0)) = (𝑧 ∈ ℂ ↦ 1)
90 fconstmpt 4594 . . . . . . . . . . . . . . 15 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
9189, 90eqtr4i 2164 . . . . . . . . . . . . . 14 (𝑧 ∈ ℂ ↦ (1 − 0)) = (ℂ × {1})
9287, 91eqtrdi 2189 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (ℂ × {1}))
9379, 92eleqtrrd 2220 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
94 df-br 3938 . . . . . . . . . . . 12 (𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1 ↔ ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
9593, 94sylibr 133 . . . . . . . . . . 11 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1)
96 eqid 2140 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
9726, 34, 47, 34, 71, 34, 34, 75, 95, 96dvcoapbr 12879 . . . . . . . . . 10 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))(1 · 1))
98 1t1e1 8896 . . . . . . . . . 10 (1 · 1) = 1
9997, 98breqtrdi 3977 . . . . . . . . 9 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))1)
10046, 99breqdi 3952 . . . . . . . 8 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))1)
10133, 34, 35, 34, 44, 100, 96dvmulxxbr 12874 . . . . . . 7 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))))
10235, 60ffvelrnd 5564 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥) ∈ ℂ)
103102mul02d 8178 . . . . . . . . 9 (𝑥 ∈ ℂ → (0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) = 0)
104 fvconst2g 5642 . . . . . . . . . . . 12 (((exp‘𝑥) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥))
10518, 104mpancom 419 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥))
106105oveq2d 5798 . . . . . . . . . 10 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (1 · (exp‘𝑥)))
10718mulid2d 7808 . . . . . . . . . 10 (𝑥 ∈ ℂ → (1 · (exp‘𝑥)) = (exp‘𝑥))
108106, 107eqtrd 2173 . . . . . . . . 9 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (exp‘𝑥))
109103, 108oveq12d 5800 . . . . . . . 8 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (0 + (exp‘𝑥)))
11018addid2d 7936 . . . . . . . 8 (𝑥 ∈ ℂ → (0 + (exp‘𝑥)) = (exp‘𝑥))
111109, 110eqtrd 2173 . . . . . . 7 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (exp‘𝑥))
112101, 111breqtrd 3962 . . . . . 6 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))(exp‘𝑥))
11329, 112breqdi 3952 . . . . 5 (𝑥 ∈ ℂ → 𝑥(ℂ D exp)(exp‘𝑥))
114 funbrfv 5468 . . . . 5 (Fun (ℂ D exp) → (𝑥(ℂ D exp)(exp‘𝑥) → ((ℂ D exp)‘𝑥) = (exp‘𝑥)))
1158, 113, 114mpsyl 65 . . . 4 (𝑥 ∈ ℂ → ((ℂ D exp)‘𝑥) = (exp‘𝑥))
116115mpteq2ia 4022 . . 3 (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
117 ssid 3122 . . . . . . . . 9 ℂ ⊆ ℂ
118 dvbsssg 12863 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ exp ∈ (ℂ ↑pm ℂ)) → dom (ℂ D exp) ⊆ ℂ)
119117, 4, 118mp2an 423 . . . . . . . 8 dom (ℂ D exp) ⊆ ℂ
120 breldmg 4753 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (exp‘𝑥) ∈ ℂ ∧ 𝑥(ℂ D exp)(exp‘𝑥)) → 𝑥 ∈ dom (ℂ D exp))
12118, 113, 120mpd3an23 1318 . . . . . . . . 9 (𝑥 ∈ ℂ → 𝑥 ∈ dom (ℂ D exp))
122121ssriv 3106 . . . . . . . 8 ℂ ⊆ dom (ℂ D exp)
123119, 122eqssi 3118 . . . . . . 7 dom (ℂ D exp) = ℂ
124123feq2i 5274 . . . . . 6 ((ℂ D exp):dom (ℂ D exp)⟶ℂ ↔ (ℂ D exp):ℂ⟶ℂ)
1256, 124mpbi 144 . . . . 5 (ℂ D exp):ℂ⟶ℂ
126125a1i 9 . . . 4 (⊤ → (ℂ D exp):ℂ⟶ℂ)
127126feqmptd 5482 . . 3 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)))
1282a1i 9 . . . 4 (⊤ → exp:ℂ⟶ℂ)
129128feqmptd 5482 . . 3 (⊤ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
130116, 127, 1293eqtr4a 2199 . 2 (⊤ → (ℂ D exp) = exp)
131130mptru 1341 1 (ℂ D exp) = exp
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wtru 1333  wcel 1481  Vcvv 2689  wss 3076  {csn 3532  cop 3535   class class class wbr 3937  cmpt 3997   × cxp 4545  dom cdm 4547  ccom 4551  Fun wfun 5125  wf 5127  cfv 5131  (class class class)co 5782  𝑓 cof 5988  pm cpm 6551  cc 7642  0cc0 7644  1c1 7645   + caddc 7647   · cmul 7649  cmin 7957   # cap 8367  abscabs 10801  expce 11385  MetOpencmopn 12193   D cdv 12832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764  ax-addf 7766  ax-mulf 7767
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-of 5990  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-map 6552  df-pm 6553  df-en 6643  df-dom 6644  df-fin 6645  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-ntr 12304  df-cn 12396  df-cnp 12397  df-tx 12461  df-cncf 12766  df-limced 12833  df-dvap 12834
This theorem is referenced by:  efcn  12897
  Copyright terms: Public domain W3C validator