ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvef GIF version

Theorem dvef 15314
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef (ℂ D exp) = exp

Proof of Theorem dvef
Dummy variables 𝑥 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 8084 . . . . . . . 8 ℂ ∈ V
2 eff 12089 . . . . . . . 8 exp:ℂ⟶ℂ
3 fpmg 6784 . . . . . . . 8 ((ℂ ∈ V ∧ ℂ ∈ V ∧ exp:ℂ⟶ℂ) → exp ∈ (ℂ ↑pm ℂ))
41, 1, 2, 3mp3an 1350 . . . . . . 7 exp ∈ (ℂ ↑pm ℂ)
5 dvfcnpm 15277 . . . . . . 7 (exp ∈ (ℂ ↑pm ℂ) → (ℂ D exp):dom (ℂ D exp)⟶ℂ)
64, 5ax-mp 5 . . . . . 6 (ℂ D exp):dom (ℂ D exp)⟶ℂ
7 ffun 5448 . . . . . 6 ((ℂ D exp):dom (ℂ D exp)⟶ℂ → Fun (ℂ D exp))
86, 7ax-mp 5 . . . . 5 Fun (ℂ D exp)
9 subcl 8306 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
109ancoms 268 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
11 efadd 12101 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑧𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
1210, 11syldan 282 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
13 pncan3 8315 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 + (𝑧𝑥)) = 𝑧)
1413fveq2d 5603 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = (exp‘𝑧))
1512, 14eqtr3d 2242 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((exp‘𝑥) · (exp‘(𝑧𝑥))) = (exp‘𝑧))
1615mpteq2dva 4150 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
171a1i 9 . . . . . . . . 9 (𝑥 ∈ ℂ → ℂ ∈ V)
18 efcl 12090 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
1918adantr 276 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
20 efcl 12090 . . . . . . . . . 10 ((𝑧𝑥) ∈ ℂ → (exp‘(𝑧𝑥)) ∈ ℂ)
2110, 20syl 14 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ ℂ)
22 fconstmpt 4740 . . . . . . . . . 10 (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥))
2322a1i 9 . . . . . . . . 9 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥)))
24 eqidd 2208 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
2517, 19, 21, 23, 24offval2 6197 . . . . . . . 8 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))))
262a1i 9 . . . . . . . . 9 (𝑥 ∈ ℂ → exp:ℂ⟶ℂ)
2726feqmptd 5655 . . . . . . . 8 (𝑥 ∈ ℂ → exp = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
2816, 25, 273eqtr4d 2250 . . . . . . 7 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = exp)
2928oveq2d 5983 . . . . . 6 (𝑥 ∈ ℂ → (ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))) = (ℂ D exp))
30 fconstg 5494 . . . . . . . . . 10 ((exp‘𝑥) ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
3118, 30syl 14 . . . . . . . . 9 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
3218snssd 3789 . . . . . . . . 9 (𝑥 ∈ ℂ → {(exp‘𝑥)} ⊆ ℂ)
3331, 32fssd 5458 . . . . . . . 8 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶ℂ)
34 ssidd 3222 . . . . . . . 8 (𝑥 ∈ ℂ → ℂ ⊆ ℂ)
3521fmpttd 5758 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))):ℂ⟶ℂ)
36 c0ex 8101 . . . . . . . . . . . 12 0 ∈ V
3736snid 3674 . . . . . . . . . . 11 0 ∈ {0}
38 opelxpi 4725 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 0 ∈ {0}) → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
3937, 38mpan2 425 . . . . . . . . . 10 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
40 dvconst 15281 . . . . . . . . . . 11 ((exp‘𝑥) ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
4118, 40syl 14 . . . . . . . . . 10 (𝑥 ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
4239, 41eleqtrrd 2287 . . . . . . . . 9 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
43 df-br 4060 . . . . . . . . 9 (𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0 ↔ ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
4442, 43sylibr 134 . . . . . . . 8 (𝑥 ∈ ℂ → 𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0)
4526, 10cofmpt 5772 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
4645oveq2d 5983 . . . . . . . . 9 (𝑥 ∈ ℂ → (ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥)))) = (ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))
4710fmpttd 5758 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝑧𝑥)):ℂ⟶ℂ)
48 simpr 110 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → 𝑢 ∈ ℂ)
4948adantr 276 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑢 ∈ ℂ)
50 simpl 109 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → 𝑥 ∈ ℂ)
5150adantr 276 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑥 ∈ ℂ)
52 simpr 110 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑢 # 𝑥)
5349, 51, 52subap0d 8752 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → (𝑢𝑥) # 0)
54 eqid 2207 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℂ ↦ (𝑧𝑥)) = (𝑧 ∈ ℂ ↦ (𝑧𝑥))
55 oveq1 5974 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑢 → (𝑧𝑥) = (𝑢𝑥))
56 subcl 8306 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑢𝑥) ∈ ℂ)
5756ancoms 268 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢𝑥) ∈ ℂ)
5854, 55, 48, 57fvmptd3 5696 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) = (𝑢𝑥))
59 oveq1 5974 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → (𝑧𝑥) = (𝑥𝑥))
60 id 19 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
6160, 60subcld 8418 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (𝑥𝑥) ∈ ℂ)
6261adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑥𝑥) ∈ ℂ)
6354, 59, 50, 62fvmptd3 5696 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = (𝑥𝑥))
64 subid 8326 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (𝑥𝑥) = 0)
6564adantr 276 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑥𝑥) = 0)
6663, 65eqtrd 2240 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = 0)
6758, 66breq12d 4072 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) ↔ (𝑢𝑥) # 0))
6867adantr 276 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → (((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) ↔ (𝑢𝑥) # 0))
6953, 68mpbird 167 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥))
7069ex 115 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢 # 𝑥 → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)))
7170ralrimiva 2581 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ∀𝑢 ∈ ℂ (𝑢 # 𝑥 → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)))
7254, 59, 60, 61fvmptd3 5696 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = (𝑥𝑥))
7372, 64eqtrd 2240 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = 0)
74 dveflem 15313 . . . . . . . . . . . 12 0(ℂ D exp)1
7573, 74eqbrtrdi 4098 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)(ℂ D exp)1)
76 1ex 8102 . . . . . . . . . . . . . . 15 1 ∈ V
7776snid 3674 . . . . . . . . . . . . . 14 1 ∈ {1}
78 opelxpi 4725 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 1 ∈ {1}) → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
7977, 78mpan2 425 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
80 simpr 110 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
81 1cnd 8123 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
82 dvmptidcn 15301 . . . . . . . . . . . . . . . 16 (ℂ D (𝑧 ∈ ℂ ↦ 𝑧)) = (𝑧 ∈ ℂ ↦ 1)
8382a1i 9 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑧)) = (𝑧 ∈ ℂ ↦ 1))
84 simpl 109 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ)
85 0cnd 8100 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 0 ∈ ℂ)
8660dvmptccn 15302 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑥)) = (𝑧 ∈ ℂ ↦ 0))
8780, 81, 83, 84, 85, 86dvmptsubcn 15310 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (1 − 0)))
88 1m0e1 9184 . . . . . . . . . . . . . . . 16 (1 − 0) = 1
8988mpteq2i 4147 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℂ ↦ (1 − 0)) = (𝑧 ∈ ℂ ↦ 1)
90 fconstmpt 4740 . . . . . . . . . . . . . . 15 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
9189, 90eqtr4i 2231 . . . . . . . . . . . . . 14 (𝑧 ∈ ℂ ↦ (1 − 0)) = (ℂ × {1})
9287, 91eqtrdi 2256 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (ℂ × {1}))
9379, 92eleqtrrd 2287 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
94 df-br 4060 . . . . . . . . . . . 12 (𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1 ↔ ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
9593, 94sylibr 134 . . . . . . . . . . 11 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1)
96 eqid 2207 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
9726, 34, 47, 34, 71, 34, 34, 75, 95, 96dvcoapbr 15294 . . . . . . . . . 10 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))(1 · 1))
98 1t1e1 9224 . . . . . . . . . 10 (1 · 1) = 1
9997, 98breqtrdi 4100 . . . . . . . . 9 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))1)
10046, 99breqdi 4074 . . . . . . . 8 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))1)
10133, 34, 35, 34, 44, 100, 96dvmulxxbr 15289 . . . . . . 7 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))))
10235, 60ffvelcdmd 5739 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥) ∈ ℂ)
103102mul02d 8499 . . . . . . . . 9 (𝑥 ∈ ℂ → (0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) = 0)
104 fvconst2g 5821 . . . . . . . . . . . 12 (((exp‘𝑥) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥))
10518, 104mpancom 422 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥))
106105oveq2d 5983 . . . . . . . . . 10 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (1 · (exp‘𝑥)))
10718mulid2d 8126 . . . . . . . . . 10 (𝑥 ∈ ℂ → (1 · (exp‘𝑥)) = (exp‘𝑥))
108106, 107eqtrd 2240 . . . . . . . . 9 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (exp‘𝑥))
109103, 108oveq12d 5985 . . . . . . . 8 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (0 + (exp‘𝑥)))
11018addlidd 8257 . . . . . . . 8 (𝑥 ∈ ℂ → (0 + (exp‘𝑥)) = (exp‘𝑥))
111109, 110eqtrd 2240 . . . . . . 7 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (exp‘𝑥))
112101, 111breqtrd 4085 . . . . . 6 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))(exp‘𝑥))
11329, 112breqdi 4074 . . . . 5 (𝑥 ∈ ℂ → 𝑥(ℂ D exp)(exp‘𝑥))
114 funbrfv 5640 . . . . 5 (Fun (ℂ D exp) → (𝑥(ℂ D exp)(exp‘𝑥) → ((ℂ D exp)‘𝑥) = (exp‘𝑥)))
1158, 113, 114mpsyl 65 . . . 4 (𝑥 ∈ ℂ → ((ℂ D exp)‘𝑥) = (exp‘𝑥))
116115mpteq2ia 4146 . . 3 (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
117 ssid 3221 . . . . . . . . 9 ℂ ⊆ ℂ
118 dvbsssg 15273 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ exp ∈ (ℂ ↑pm ℂ)) → dom (ℂ D exp) ⊆ ℂ)
119117, 4, 118mp2an 426 . . . . . . . 8 dom (ℂ D exp) ⊆ ℂ
120 breldmg 4903 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (exp‘𝑥) ∈ ℂ ∧ 𝑥(ℂ D exp)(exp‘𝑥)) → 𝑥 ∈ dom (ℂ D exp))
12118, 113, 120mpd3an23 1352 . . . . . . . . 9 (𝑥 ∈ ℂ → 𝑥 ∈ dom (ℂ D exp))
122121ssriv 3205 . . . . . . . 8 ℂ ⊆ dom (ℂ D exp)
123119, 122eqssi 3217 . . . . . . 7 dom (ℂ D exp) = ℂ
124123feq2i 5439 . . . . . 6 ((ℂ D exp):dom (ℂ D exp)⟶ℂ ↔ (ℂ D exp):ℂ⟶ℂ)
1256, 124mpbi 145 . . . . 5 (ℂ D exp):ℂ⟶ℂ
126125a1i 9 . . . 4 (⊤ → (ℂ D exp):ℂ⟶ℂ)
127126feqmptd 5655 . . 3 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)))
1282a1i 9 . . . 4 (⊤ → exp:ℂ⟶ℂ)
129128feqmptd 5655 . . 3 (⊤ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
130116, 127, 1293eqtr4a 2266 . 2 (⊤ → (ℂ D exp) = exp)
131130mptru 1382 1 (ℂ D exp) = exp
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wtru 1374  wcel 2178  Vcvv 2776  wss 3174  {csn 3643  cop 3646   class class class wbr 4059  cmpt 4121   × cxp 4691  dom cdm 4693  ccom 4697  Fun wfun 5284  wf 5286  cfv 5290  (class class class)co 5967  𝑓 cof 6179  pm cpm 6759  cc 7958  0cc0 7960  1c1 7961   + caddc 7963   · cmul 7965  cmin 8278   # cap 8689  abscabs 11423  expce 12068  MetOpencmopn 14418   D cdv 15242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080  ax-addf 8082  ax-mulf 8083
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-map 6760  df-pm 6761  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-bc 10930  df-ihash 10958  df-shft 11241  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780  df-ef 12074  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-cn 14775  df-cnp 14776  df-tx 14840  df-cncf 15158  df-limced 15243  df-dvap 15244
This theorem is referenced by:  efcn  15355
  Copyright terms: Public domain W3C validator