Step | Hyp | Ref
| Expression |
1 | | cnex 7898 |
. . . . . . . 8
⊢ ℂ
∈ V |
2 | | eff 11626 |
. . . . . . . 8
⊢
exp:ℂ⟶ℂ |
3 | | fpmg 6652 |
. . . . . . . 8
⊢ ((ℂ
∈ V ∧ ℂ ∈ V ∧ exp:ℂ⟶ℂ) → exp
∈ (ℂ ↑pm ℂ)) |
4 | 1, 1, 2, 3 | mp3an 1332 |
. . . . . . 7
⊢ exp
∈ (ℂ ↑pm ℂ) |
5 | | dvfcnpm 13453 |
. . . . . . 7
⊢ (exp
∈ (ℂ ↑pm ℂ) → (ℂ D exp):dom
(ℂ D exp)⟶ℂ) |
6 | 4, 5 | ax-mp 5 |
. . . . . 6
⊢ (ℂ
D exp):dom (ℂ D exp)⟶ℂ |
7 | | ffun 5350 |
. . . . . 6
⊢ ((ℂ
D exp):dom (ℂ D exp)⟶ℂ → Fun (ℂ D
exp)) |
8 | 6, 7 | ax-mp 5 |
. . . . 5
⊢ Fun
(ℂ D exp) |
9 | | subcl 8118 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧 − 𝑥) ∈ ℂ) |
10 | 9 | ancoms 266 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 − 𝑥) ∈ ℂ) |
11 | | efadd 11638 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ (𝑧 − 𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑧 − 𝑥))) = ((exp‘𝑥) · (exp‘(𝑧 − 𝑥)))) |
12 | 10, 11 | syldan 280 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
(exp‘(𝑥 + (𝑧 − 𝑥))) = ((exp‘𝑥) · (exp‘(𝑧 − 𝑥)))) |
13 | | pncan3 8127 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 + (𝑧 − 𝑥)) = 𝑧) |
14 | 13 | fveq2d 5500 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
(exp‘(𝑥 + (𝑧 − 𝑥))) = (exp‘𝑧)) |
15 | 12, 14 | eqtr3d 2205 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
((exp‘𝑥) ·
(exp‘(𝑧 − 𝑥))) = (exp‘𝑧)) |
16 | 15 | mpteq2dva 4079 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦
((exp‘𝑥) ·
(exp‘(𝑧 − 𝑥)))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧))) |
17 | 1 | a1i 9 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → ℂ
∈ V) |
18 | | efcl 11627 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ →
(exp‘𝑥) ∈
ℂ) |
19 | 18 | adantr 274 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
(exp‘𝑥) ∈
ℂ) |
20 | | efcl 11627 |
. . . . . . . . . 10
⊢ ((𝑧 − 𝑥) ∈ ℂ → (exp‘(𝑧 − 𝑥)) ∈ ℂ) |
21 | 10, 20 | syl 14 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) →
(exp‘(𝑧 − 𝑥)) ∈
ℂ) |
22 | | fconstmpt 4658 |
. . . . . . . . . 10
⊢ (ℂ
× {(exp‘𝑥)}) =
(𝑧 ∈ ℂ ↦
(exp‘𝑥)) |
23 | 22 | a1i 9 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → (ℂ
× {(exp‘𝑥)}) =
(𝑧 ∈ ℂ ↦
(exp‘𝑥))) |
24 | | eqidd 2171 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦
(exp‘(𝑧 − 𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))) |
25 | 17, 19, 21, 23, 24 | offval2 6076 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → ((ℂ
× {(exp‘𝑥)})
∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧 − 𝑥))))) |
26 | 2 | a1i 9 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ →
exp:ℂ⟶ℂ) |
27 | 26 | feqmptd 5549 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → exp =
(𝑧 ∈ ℂ ↦
(exp‘𝑧))) |
28 | 16, 25, 27 | 3eqtr4d 2213 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → ((ℂ
× {(exp‘𝑥)})
∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))) = exp) |
29 | 28 | oveq2d 5869 |
. . . . . 6
⊢ (𝑥 ∈ ℂ → (ℂ
D ((ℂ × {(exp‘𝑥)}) ∘𝑓 ·
(𝑧 ∈ ℂ ↦
(exp‘(𝑧 − 𝑥))))) = (ℂ D
exp)) |
30 | | fconstg 5394 |
. . . . . . . . . 10
⊢
((exp‘𝑥)
∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)}) |
31 | 18, 30 | syl 14 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → (ℂ
× {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)}) |
32 | 18 | snssd 3725 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ →
{(exp‘𝑥)} ⊆
ℂ) |
33 | 31, 32 | fssd 5360 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → (ℂ
× {(exp‘𝑥)}):ℂ⟶ℂ) |
34 | | ssidd 3168 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → ℂ
⊆ ℂ) |
35 | 21 | fmpttd 5651 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦
(exp‘(𝑧 − 𝑥))):ℂ⟶ℂ) |
36 | | c0ex 7914 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
37 | 36 | snid 3614 |
. . . . . . . . . . 11
⊢ 0 ∈
{0} |
38 | | opelxpi 4643 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 0 ∈
{0}) → 〈𝑥,
0〉 ∈ (ℂ × {0})) |
39 | 37, 38 | mpan2 423 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ →
〈𝑥, 0〉 ∈
(ℂ × {0})) |
40 | | dvconst 13455 |
. . . . . . . . . . 11
⊢
((exp‘𝑥)
∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ ×
{0})) |
41 | 18, 40 | syl 14 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ → (ℂ
D (ℂ × {(exp‘𝑥)})) = (ℂ ×
{0})) |
42 | 39, 41 | eleqtrrd 2250 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ →
〈𝑥, 0〉 ∈
(ℂ D (ℂ × {(exp‘𝑥)}))) |
43 | | df-br 3990 |
. . . . . . . . 9
⊢ (𝑥(ℂ D (ℂ ×
{(exp‘𝑥)}))0 ↔
〈𝑥, 0〉 ∈
(ℂ D (ℂ × {(exp‘𝑥)}))) |
44 | 42, 43 | sylibr 133 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D (ℂ ×
{(exp‘𝑥)}))0) |
45 | 26, 10 | cofmpt 5665 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ → (exp
∘ (𝑧 ∈ ℂ
↦ (𝑧 − 𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))) |
46 | 45 | oveq2d 5869 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → (ℂ
D (exp ∘ (𝑧 ∈
ℂ ↦ (𝑧 −
𝑥)))) = (ℂ D (𝑧 ∈ ℂ ↦
(exp‘(𝑧 − 𝑥))))) |
47 | 10 | fmpttd 5651 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥)):ℂ⟶ℂ) |
48 | | simpr 109 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → 𝑢 ∈
ℂ) |
49 | 48 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑢 ∈ ℂ) |
50 | | simpl 108 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → 𝑥 ∈
ℂ) |
51 | 50 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑥 ∈ ℂ) |
52 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑢 # 𝑥) |
53 | 49, 51, 52 | subap0d 8563 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → (𝑢 − 𝑥) # 0) |
54 | | eqid 2170 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥)) = (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥)) |
55 | | oveq1 5860 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑢 → (𝑧 − 𝑥) = (𝑢 − 𝑥)) |
56 | | subcl 8118 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑢 − 𝑥) ∈ ℂ) |
57 | 56 | ancoms 266 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢 − 𝑥) ∈ ℂ) |
58 | 54, 55, 48, 57 | fvmptd3 5589 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑢) = (𝑢 − 𝑥)) |
59 | | oveq1 5860 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑥 → (𝑧 − 𝑥) = (𝑥 − 𝑥)) |
60 | | id 19 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℂ → 𝑥 ∈
ℂ) |
61 | 60, 60 | subcld 8230 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℂ → (𝑥 − 𝑥) ∈ ℂ) |
62 | 61 | adantr 274 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑥 − 𝑥) ∈ ℂ) |
63 | 54, 59, 50, 62 | fvmptd3 5589 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑥) = (𝑥 − 𝑥)) |
64 | | subid 8138 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℂ → (𝑥 − 𝑥) = 0) |
65 | 64 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑥 − 𝑥) = 0) |
66 | 63, 65 | eqtrd 2203 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑥) = 0) |
67 | 58, 66 | breq12d 4002 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑥) ↔ (𝑢 − 𝑥) # 0)) |
68 | 67 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → (((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑥) ↔ (𝑢 − 𝑥) # 0)) |
69 | 53, 68 | mpbird 166 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑥)) |
70 | 69 | ex 114 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢 # 𝑥 → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑥))) |
71 | 70 | ralrimiva 2543 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℂ →
∀𝑢 ∈ ℂ
(𝑢 # 𝑥 → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑥))) |
72 | 54, 59, 60, 61 | fvmptd3 5589 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑥) = (𝑥 − 𝑥)) |
73 | 72, 64 | eqtrd 2203 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑥) = 0) |
74 | | dveflem 13481 |
. . . . . . . . . . . 12
⊢ 0(ℂ
D exp)1 |
75 | 73, 74 | eqbrtrdi 4028 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))‘𝑥)(ℂ D exp)1) |
76 | | 1ex 7915 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
V |
77 | 76 | snid 3614 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
{1} |
78 | | opelxpi 4643 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ 1 ∈
{1}) → 〈𝑥,
1〉 ∈ (ℂ × {1})) |
79 | 77, 78 | mpan2 423 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ →
〈𝑥, 1〉 ∈
(ℂ × {1})) |
80 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈
ℂ) |
81 | | 1cnd 7936 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 1 ∈
ℂ) |
82 | | dvmptidcn 13472 |
. . . . . . . . . . . . . . . 16
⊢ (ℂ
D (𝑧 ∈ ℂ ↦
𝑧)) = (𝑧 ∈ ℂ ↦ 1) |
83 | 82 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ → (ℂ
D (𝑧 ∈ ℂ ↦
𝑧)) = (𝑧 ∈ ℂ ↦ 1)) |
84 | | simpl 108 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈
ℂ) |
85 | | 0cnd 7913 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 0 ∈
ℂ) |
86 | 60 | dvmptccn 13473 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ → (ℂ
D (𝑧 ∈ ℂ ↦
𝑥)) = (𝑧 ∈ ℂ ↦ 0)) |
87 | 80, 81, 83, 84, 85, 86 | dvmptsubcn 13479 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → (ℂ
D (𝑧 ∈ ℂ ↦
(𝑧 − 𝑥))) = (𝑧 ∈ ℂ ↦ (1 −
0))) |
88 | | 1m0e1 8991 |
. . . . . . . . . . . . . . . 16
⊢ (1
− 0) = 1 |
89 | 88 | mpteq2i 4076 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ℂ ↦ (1
− 0)) = (𝑧 ∈
ℂ ↦ 1) |
90 | | fconstmpt 4658 |
. . . . . . . . . . . . . . 15
⊢ (ℂ
× {1}) = (𝑧 ∈
ℂ ↦ 1) |
91 | 89, 90 | eqtr4i 2194 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ℂ ↦ (1
− 0)) = (ℂ × {1}) |
92 | 87, 91 | eqtrdi 2219 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → (ℂ
D (𝑧 ∈ ℂ ↦
(𝑧 − 𝑥))) = (ℂ ×
{1})) |
93 | 79, 92 | eleqtrrd 2250 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ →
〈𝑥, 1〉 ∈
(ℂ D (𝑧 ∈
ℂ ↦ (𝑧 −
𝑥)))) |
94 | | df-br 3990 |
. . . . . . . . . . . 12
⊢ (𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥)))1 ↔ 〈𝑥, 1〉 ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥)))) |
95 | 93, 94 | sylibr 133 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥)))1) |
96 | | eqid 2170 |
. . . . . . . . . . 11
⊢
(MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘
− )) |
97 | 26, 34, 47, 34, 71, 34, 34, 75, 95, 96 | dvcoapbr 13465 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))))(1 · 1)) |
98 | | 1t1e1 9030 |
. . . . . . . . . 10
⊢ (1
· 1) = 1 |
99 | 97, 98 | breqtrdi 4030 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧 − 𝑥))))1) |
100 | 46, 99 | breqdi 4004 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥))))1) |
101 | 33, 34, 35, 34, 44, 100, 96 | dvmulxxbr 13460 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ ×
{(exp‘𝑥)})
∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))))((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))‘𝑥)) + (1 · ((ℂ ×
{(exp‘𝑥)})‘𝑥)))) |
102 | 35, 60 | ffvelrnd 5632 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦
(exp‘(𝑧 − 𝑥)))‘𝑥) ∈ ℂ) |
103 | 102 | mul02d 8311 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → (0
· ((𝑧 ∈ ℂ
↦ (exp‘(𝑧
− 𝑥)))‘𝑥)) = 0) |
104 | | fvconst2g 5710 |
. . . . . . . . . . . 12
⊢
(((exp‘𝑥)
∈ ℂ ∧ 𝑥
∈ ℂ) → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥)) |
105 | 18, 104 | mpancom 420 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℂ → ((ℂ
× {(exp‘𝑥)})‘𝑥) = (exp‘𝑥)) |
106 | 105 | oveq2d 5869 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ → (1
· ((ℂ × {(exp‘𝑥)})‘𝑥)) = (1 · (exp‘𝑥))) |
107 | 18 | mulid2d 7938 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ → (1
· (exp‘𝑥)) =
(exp‘𝑥)) |
108 | 106, 107 | eqtrd 2203 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → (1
· ((ℂ × {(exp‘𝑥)})‘𝑥)) = (exp‘𝑥)) |
109 | 103, 108 | oveq12d 5871 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → ((0
· ((𝑧 ∈ ℂ
↦ (exp‘(𝑧
− 𝑥)))‘𝑥)) + (1 · ((ℂ
× {(exp‘𝑥)})‘𝑥))) = (0 + (exp‘𝑥))) |
110 | 18 | addid2d 8069 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → (0 +
(exp‘𝑥)) =
(exp‘𝑥)) |
111 | 109, 110 | eqtrd 2203 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → ((0
· ((𝑧 ∈ ℂ
↦ (exp‘(𝑧
− 𝑥)))‘𝑥)) + (1 · ((ℂ
× {(exp‘𝑥)})‘𝑥))) = (exp‘𝑥)) |
112 | 101, 111 | breqtrd 4015 |
. . . . . 6
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ ×
{(exp‘𝑥)})
∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧 − 𝑥)))))(exp‘𝑥)) |
113 | 29, 112 | breqdi 4004 |
. . . . 5
⊢ (𝑥 ∈ ℂ → 𝑥(ℂ D exp)(exp‘𝑥)) |
114 | | funbrfv 5535 |
. . . . 5
⊢ (Fun
(ℂ D exp) → (𝑥(ℂ D exp)(exp‘𝑥) → ((ℂ D exp)‘𝑥) = (exp‘𝑥))) |
115 | 8, 113, 114 | mpsyl 65 |
. . . 4
⊢ (𝑥 ∈ ℂ → ((ℂ
D exp)‘𝑥) =
(exp‘𝑥)) |
116 | 115 | mpteq2ia 4075 |
. . 3
⊢ (𝑥 ∈ ℂ ↦
((ℂ D exp)‘𝑥))
= (𝑥 ∈ ℂ ↦
(exp‘𝑥)) |
117 | | ssid 3167 |
. . . . . . . . 9
⊢ ℂ
⊆ ℂ |
118 | | dvbsssg 13449 |
. . . . . . . . 9
⊢ ((ℂ
⊆ ℂ ∧ exp ∈ (ℂ ↑pm ℂ))
→ dom (ℂ D exp) ⊆ ℂ) |
119 | 117, 4, 118 | mp2an 424 |
. . . . . . . 8
⊢ dom
(ℂ D exp) ⊆ ℂ |
120 | | breldmg 4817 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧
(exp‘𝑥) ∈
ℂ ∧ 𝑥(ℂ D
exp)(exp‘𝑥)) →
𝑥 ∈ dom (ℂ D
exp)) |
121 | 18, 113, 120 | mpd3an23 1334 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → 𝑥 ∈ dom (ℂ D
exp)) |
122 | 121 | ssriv 3151 |
. . . . . . . 8
⊢ ℂ
⊆ dom (ℂ D exp) |
123 | 119, 122 | eqssi 3163 |
. . . . . . 7
⊢ dom
(ℂ D exp) = ℂ |
124 | 123 | feq2i 5341 |
. . . . . 6
⊢ ((ℂ
D exp):dom (ℂ D exp)⟶ℂ ↔ (ℂ D
exp):ℂ⟶ℂ) |
125 | 6, 124 | mpbi 144 |
. . . . 5
⊢ (ℂ
D exp):ℂ⟶ℂ |
126 | 125 | a1i 9 |
. . . 4
⊢ (⊤
→ (ℂ D exp):ℂ⟶ℂ) |
127 | 126 | feqmptd 5549 |
. . 3
⊢ (⊤
→ (ℂ D exp) = (𝑥
∈ ℂ ↦ ((ℂ D exp)‘𝑥))) |
128 | 2 | a1i 9 |
. . . 4
⊢ (⊤
→ exp:ℂ⟶ℂ) |
129 | 128 | feqmptd 5549 |
. . 3
⊢ (⊤
→ exp = (𝑥 ∈
ℂ ↦ (exp‘𝑥))) |
130 | 116, 127,
129 | 3eqtr4a 2229 |
. 2
⊢ (⊤
→ (ℂ D exp) = exp) |
131 | 130 | mptru 1357 |
1
⊢ (ℂ
D exp) = exp |