ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvef GIF version

Theorem dvef 14873
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef (ℂ D exp) = exp

Proof of Theorem dvef
Dummy variables 𝑥 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 7996 . . . . . . . 8 ℂ ∈ V
2 eff 11806 . . . . . . . 8 exp:ℂ⟶ℂ
3 fpmg 6728 . . . . . . . 8 ((ℂ ∈ V ∧ ℂ ∈ V ∧ exp:ℂ⟶ℂ) → exp ∈ (ℂ ↑pm ℂ))
41, 1, 2, 3mp3an 1348 . . . . . . 7 exp ∈ (ℂ ↑pm ℂ)
5 dvfcnpm 14844 . . . . . . 7 (exp ∈ (ℂ ↑pm ℂ) → (ℂ D exp):dom (ℂ D exp)⟶ℂ)
64, 5ax-mp 5 . . . . . 6 (ℂ D exp):dom (ℂ D exp)⟶ℂ
7 ffun 5406 . . . . . 6 ((ℂ D exp):dom (ℂ D exp)⟶ℂ → Fun (ℂ D exp))
86, 7ax-mp 5 . . . . 5 Fun (ℂ D exp)
9 subcl 8218 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
109ancoms 268 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝑥) ∈ ℂ)
11 efadd 11818 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑧𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
1210, 11syldan 282 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = ((exp‘𝑥) · (exp‘(𝑧𝑥))))
13 pncan3 8227 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 + (𝑧𝑥)) = 𝑧)
1413fveq2d 5558 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑥 + (𝑧𝑥))) = (exp‘𝑧))
1512, 14eqtr3d 2228 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((exp‘𝑥) · (exp‘(𝑧𝑥))) = (exp‘𝑧))
1615mpteq2dva 4119 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
171a1i 9 . . . . . . . . 9 (𝑥 ∈ ℂ → ℂ ∈ V)
18 efcl 11807 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
1918adantr 276 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
20 efcl 11807 . . . . . . . . . 10 ((𝑧𝑥) ∈ ℂ → (exp‘(𝑧𝑥)) ∈ ℂ)
2110, 20syl 14 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (exp‘(𝑧𝑥)) ∈ ℂ)
22 fconstmpt 4706 . . . . . . . . . 10 (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥))
2322a1i 9 . . . . . . . . 9 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}) = (𝑧 ∈ ℂ ↦ (exp‘𝑥)))
24 eqidd 2194 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
2517, 19, 21, 23, 24offval2 6146 . . . . . . . 8 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑥) · (exp‘(𝑧𝑥)))))
262a1i 9 . . . . . . . . 9 (𝑥 ∈ ℂ → exp:ℂ⟶ℂ)
2726feqmptd 5610 . . . . . . . 8 (𝑥 ∈ ℂ → exp = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
2816, 25, 273eqtr4d 2236 . . . . . . 7 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))) = exp)
2928oveq2d 5934 . . . . . 6 (𝑥 ∈ ℂ → (ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))) = (ℂ D exp))
30 fconstg 5450 . . . . . . . . . 10 ((exp‘𝑥) ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
3118, 30syl 14 . . . . . . . . 9 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶{(exp‘𝑥)})
3218snssd 3763 . . . . . . . . 9 (𝑥 ∈ ℂ → {(exp‘𝑥)} ⊆ ℂ)
3331, 32fssd 5416 . . . . . . . 8 (𝑥 ∈ ℂ → (ℂ × {(exp‘𝑥)}):ℂ⟶ℂ)
34 ssidd 3200 . . . . . . . 8 (𝑥 ∈ ℂ → ℂ ⊆ ℂ)
3521fmpttd 5713 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))):ℂ⟶ℂ)
36 c0ex 8013 . . . . . . . . . . . 12 0 ∈ V
3736snid 3649 . . . . . . . . . . 11 0 ∈ {0}
38 opelxpi 4691 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 0 ∈ {0}) → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
3937, 38mpan2 425 . . . . . . . . . 10 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ × {0}))
40 dvconst 14846 . . . . . . . . . . 11 ((exp‘𝑥) ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
4118, 40syl 14 . . . . . . . . . 10 (𝑥 ∈ ℂ → (ℂ D (ℂ × {(exp‘𝑥)})) = (ℂ × {0}))
4239, 41eleqtrrd 2273 . . . . . . . . 9 (𝑥 ∈ ℂ → ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
43 df-br 4030 . . . . . . . . 9 (𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0 ↔ ⟨𝑥, 0⟩ ∈ (ℂ D (ℂ × {(exp‘𝑥)})))
4442, 43sylibr 134 . . . . . . . 8 (𝑥 ∈ ℂ → 𝑥(ℂ D (ℂ × {(exp‘𝑥)}))0)
4526, 10cofmpt 5727 . . . . . . . . . 10 (𝑥 ∈ ℂ → (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))
4645oveq2d 5934 . . . . . . . . 9 (𝑥 ∈ ℂ → (ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥)))) = (ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))
4710fmpttd 5713 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝑧𝑥)):ℂ⟶ℂ)
48 simpr 110 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → 𝑢 ∈ ℂ)
4948adantr 276 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑢 ∈ ℂ)
50 simpl 109 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → 𝑥 ∈ ℂ)
5150adantr 276 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑥 ∈ ℂ)
52 simpr 110 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → 𝑢 # 𝑥)
5349, 51, 52subap0d 8663 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → (𝑢𝑥) # 0)
54 eqid 2193 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℂ ↦ (𝑧𝑥)) = (𝑧 ∈ ℂ ↦ (𝑧𝑥))
55 oveq1 5925 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑢 → (𝑧𝑥) = (𝑢𝑥))
56 subcl 8218 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑢𝑥) ∈ ℂ)
5756ancoms 268 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢𝑥) ∈ ℂ)
5854, 55, 48, 57fvmptd3 5651 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) = (𝑢𝑥))
59 oveq1 5925 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → (𝑧𝑥) = (𝑥𝑥))
60 id 19 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
6160, 60subcld 8330 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (𝑥𝑥) ∈ ℂ)
6261adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑥𝑥) ∈ ℂ)
6354, 59, 50, 62fvmptd3 5651 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = (𝑥𝑥))
64 subid 8238 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → (𝑥𝑥) = 0)
6564adantr 276 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑥𝑥) = 0)
6663, 65eqtrd 2226 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = 0)
6758, 66breq12d 4042 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) ↔ (𝑢𝑥) # 0))
6867adantr 276 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → (((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) ↔ (𝑢𝑥) # 0))
6953, 68mpbird 167 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) ∧ 𝑢 # 𝑥) → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥))
7069ex 115 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑢 # 𝑥 → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)))
7170ralrimiva 2567 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ∀𝑢 ∈ ℂ (𝑢 # 𝑥 → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑢) # ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)))
7254, 59, 60, 61fvmptd3 5651 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = (𝑥𝑥))
7372, 64eqtrd 2226 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥) = 0)
74 dveflem 14872 . . . . . . . . . . . 12 0(ℂ D exp)1
7573, 74eqbrtrdi 4068 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑧𝑥))‘𝑥)(ℂ D exp)1)
76 1ex 8014 . . . . . . . . . . . . . . 15 1 ∈ V
7776snid 3649 . . . . . . . . . . . . . 14 1 ∈ {1}
78 opelxpi 4691 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 1 ∈ {1}) → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
7977, 78mpan2 425 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ × {1}))
80 simpr 110 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
81 1cnd 8035 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
82 dvmptidcn 14863 . . . . . . . . . . . . . . . 16 (ℂ D (𝑧 ∈ ℂ ↦ 𝑧)) = (𝑧 ∈ ℂ ↦ 1)
8382a1i 9 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑧)) = (𝑧 ∈ ℂ ↦ 1))
84 simpl 109 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℂ)
85 0cnd 8012 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 0 ∈ ℂ)
8660dvmptccn 14864 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ 𝑥)) = (𝑧 ∈ ℂ ↦ 0))
8780, 81, 83, 84, 85, 86dvmptsubcn 14870 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (𝑧 ∈ ℂ ↦ (1 − 0)))
88 1m0e1 9095 . . . . . . . . . . . . . . . 16 (1 − 0) = 1
8988mpteq2i 4116 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℂ ↦ (1 − 0)) = (𝑧 ∈ ℂ ↦ 1)
90 fconstmpt 4706 . . . . . . . . . . . . . . 15 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
9189, 90eqtr4i 2217 . . . . . . . . . . . . . 14 (𝑧 ∈ ℂ ↦ (1 − 0)) = (ℂ × {1})
9287, 91eqtrdi 2242 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))) = (ℂ × {1}))
9379, 92eleqtrrd 2273 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
94 df-br 4030 . . . . . . . . . . . 12 (𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1 ↔ ⟨𝑥, 1⟩ ∈ (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥))))
9593, 94sylibr 134 . . . . . . . . . . 11 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑥)))1)
96 eqid 2193 . . . . . . . . . . 11 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
9726, 34, 47, 34, 71, 34, 34, 75, 95, 96dvcoapbr 14856 . . . . . . . . . 10 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))(1 · 1))
98 1t1e1 9134 . . . . . . . . . 10 (1 · 1) = 1
9997, 98breqtrdi 4070 . . . . . . . . 9 (𝑥 ∈ ℂ → 𝑥(ℂ D (exp ∘ (𝑧 ∈ ℂ ↦ (𝑧𝑥))))1)
10046, 99breqdi 4044 . . . . . . . 8 (𝑥 ∈ ℂ → 𝑥(ℂ D (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥))))1)
10133, 34, 35, 34, 44, 100, 96dvmulxxbr 14851 . . . . . . 7 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))))
10235, 60ffvelcdmd 5694 . . . . . . . . . 10 (𝑥 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥) ∈ ℂ)
103102mul02d 8411 . . . . . . . . 9 (𝑥 ∈ ℂ → (0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) = 0)
104 fvconst2g 5772 . . . . . . . . . . . 12 (((exp‘𝑥) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥))
10518, 104mpancom 422 . . . . . . . . . . 11 (𝑥 ∈ ℂ → ((ℂ × {(exp‘𝑥)})‘𝑥) = (exp‘𝑥))
106105oveq2d 5934 . . . . . . . . . 10 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (1 · (exp‘𝑥)))
10718mulid2d 8038 . . . . . . . . . 10 (𝑥 ∈ ℂ → (1 · (exp‘𝑥)) = (exp‘𝑥))
108106, 107eqtrd 2226 . . . . . . . . 9 (𝑥 ∈ ℂ → (1 · ((ℂ × {(exp‘𝑥)})‘𝑥)) = (exp‘𝑥))
109103, 108oveq12d 5936 . . . . . . . 8 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (0 + (exp‘𝑥)))
11018addlidd 8169 . . . . . . . 8 (𝑥 ∈ ℂ → (0 + (exp‘𝑥)) = (exp‘𝑥))
111109, 110eqtrd 2226 . . . . . . 7 (𝑥 ∈ ℂ → ((0 · ((𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))‘𝑥)) + (1 · ((ℂ × {(exp‘𝑥)})‘𝑥))) = (exp‘𝑥))
112101, 111breqtrd 4055 . . . . . 6 (𝑥 ∈ ℂ → 𝑥(ℂ D ((ℂ × {(exp‘𝑥)}) ∘𝑓 · (𝑧 ∈ ℂ ↦ (exp‘(𝑧𝑥)))))(exp‘𝑥))
11329, 112breqdi 4044 . . . . 5 (𝑥 ∈ ℂ → 𝑥(ℂ D exp)(exp‘𝑥))
114 funbrfv 5595 . . . . 5 (Fun (ℂ D exp) → (𝑥(ℂ D exp)(exp‘𝑥) → ((ℂ D exp)‘𝑥) = (exp‘𝑥)))
1158, 113, 114mpsyl 65 . . . 4 (𝑥 ∈ ℂ → ((ℂ D exp)‘𝑥) = (exp‘𝑥))
116115mpteq2ia 4115 . . 3 (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
117 ssid 3199 . . . . . . . . 9 ℂ ⊆ ℂ
118 dvbsssg 14840 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ exp ∈ (ℂ ↑pm ℂ)) → dom (ℂ D exp) ⊆ ℂ)
119117, 4, 118mp2an 426 . . . . . . . 8 dom (ℂ D exp) ⊆ ℂ
120 breldmg 4868 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (exp‘𝑥) ∈ ℂ ∧ 𝑥(ℂ D exp)(exp‘𝑥)) → 𝑥 ∈ dom (ℂ D exp))
12118, 113, 120mpd3an23 1350 . . . . . . . . 9 (𝑥 ∈ ℂ → 𝑥 ∈ dom (ℂ D exp))
122121ssriv 3183 . . . . . . . 8 ℂ ⊆ dom (ℂ D exp)
123119, 122eqssi 3195 . . . . . . 7 dom (ℂ D exp) = ℂ
124123feq2i 5397 . . . . . 6 ((ℂ D exp):dom (ℂ D exp)⟶ℂ ↔ (ℂ D exp):ℂ⟶ℂ)
1256, 124mpbi 145 . . . . 5 (ℂ D exp):ℂ⟶ℂ
126125a1i 9 . . . 4 (⊤ → (ℂ D exp):ℂ⟶ℂ)
127126feqmptd 5610 . . 3 (⊤ → (ℂ D exp) = (𝑥 ∈ ℂ ↦ ((ℂ D exp)‘𝑥)))
1282a1i 9 . . . 4 (⊤ → exp:ℂ⟶ℂ)
129128feqmptd 5610 . . 3 (⊤ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
130116, 127, 1293eqtr4a 2252 . 2 (⊤ → (ℂ D exp) = exp)
131130mptru 1373 1 (ℂ D exp) = exp
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wtru 1365  wcel 2164  Vcvv 2760  wss 3153  {csn 3618  cop 3621   class class class wbr 4029  cmpt 4090   × cxp 4657  dom cdm 4659  ccom 4663  Fun wfun 5248  wf 5250  cfv 5254  (class class class)co 5918  𝑓 cof 6128  pm cpm 6703  cc 7870  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877  cmin 8190   # cap 8600  abscabs 11141  expce 11785  MetOpencmopn 14037   D cdv 14809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-map 6704  df-pm 6705  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-bc 10819  df-ihash 10847  df-shft 10959  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-ntr 14264  df-cn 14356  df-cnp 14357  df-tx 14421  df-cncf 14726  df-limced 14810  df-dvap 14811
This theorem is referenced by:  efcn  14903
  Copyright terms: Public domain W3C validator