Step | Hyp | Ref
| Expression |
1 | | cnex 7935 |
. . . . . . . 8
β’ β
β V |
2 | | eff 11671 |
. . . . . . . 8
β’
exp:ββΆβ |
3 | | fpmg 6674 |
. . . . . . . 8
β’ ((β
β V β§ β β V β§ exp:ββΆβ) β exp
β (β βpm β)) |
4 | 1, 1, 2, 3 | mp3an 1337 |
. . . . . . 7
β’ exp
β (β βpm β) |
5 | | dvfcnpm 14162 |
. . . . . . 7
β’ (exp
β (β βpm β) β (β D exp):dom
(β D exp)βΆβ) |
6 | 4, 5 | ax-mp 5 |
. . . . . 6
β’ (β
D exp):dom (β D exp)βΆβ |
7 | | ffun 5369 |
. . . . . 6
β’ ((β
D exp):dom (β D exp)βΆβ β Fun (β D
exp)) |
8 | 6, 7 | ax-mp 5 |
. . . . 5
β’ Fun
(β D exp) |
9 | | subcl 8156 |
. . . . . . . . . . . 12
β’ ((π§ β β β§ π₯ β β) β (π§ β π₯) β β) |
10 | 9 | ancoms 268 |
. . . . . . . . . . 11
β’ ((π₯ β β β§ π§ β β) β (π§ β π₯) β β) |
11 | | efadd 11683 |
. . . . . . . . . . 11
β’ ((π₯ β β β§ (π§ β π₯) β β) β (expβ(π₯ + (π§ β π₯))) = ((expβπ₯) Β· (expβ(π§ β π₯)))) |
12 | 10, 11 | syldan 282 |
. . . . . . . . . 10
β’ ((π₯ β β β§ π§ β β) β
(expβ(π₯ + (π§ β π₯))) = ((expβπ₯) Β· (expβ(π§ β π₯)))) |
13 | | pncan3 8165 |
. . . . . . . . . . 11
β’ ((π₯ β β β§ π§ β β) β (π₯ + (π§ β π₯)) = π§) |
14 | 13 | fveq2d 5520 |
. . . . . . . . . 10
β’ ((π₯ β β β§ π§ β β) β
(expβ(π₯ + (π§ β π₯))) = (expβπ§)) |
15 | 12, 14 | eqtr3d 2212 |
. . . . . . . . 9
β’ ((π₯ β β β§ π§ β β) β
((expβπ₯) Β·
(expβ(π§ β π₯))) = (expβπ§)) |
16 | 15 | mpteq2dva 4094 |
. . . . . . . 8
β’ (π₯ β β β (π§ β β β¦
((expβπ₯) Β·
(expβ(π§ β π₯)))) = (π§ β β β¦ (expβπ§))) |
17 | 1 | a1i 9 |
. . . . . . . . 9
β’ (π₯ β β β β
β V) |
18 | | efcl 11672 |
. . . . . . . . . 10
β’ (π₯ β β β
(expβπ₯) β
β) |
19 | 18 | adantr 276 |
. . . . . . . . 9
β’ ((π₯ β β β§ π§ β β) β
(expβπ₯) β
β) |
20 | | efcl 11672 |
. . . . . . . . . 10
β’ ((π§ β π₯) β β β (expβ(π§ β π₯)) β β) |
21 | 10, 20 | syl 14 |
. . . . . . . . 9
β’ ((π₯ β β β§ π§ β β) β
(expβ(π§ β π₯)) β
β) |
22 | | fconstmpt 4674 |
. . . . . . . . . 10
β’ (β
Γ {(expβπ₯)}) =
(π§ β β β¦
(expβπ₯)) |
23 | 22 | a1i 9 |
. . . . . . . . 9
β’ (π₯ β β β (β
Γ {(expβπ₯)}) =
(π§ β β β¦
(expβπ₯))) |
24 | | eqidd 2178 |
. . . . . . . . 9
β’ (π₯ β β β (π§ β β β¦
(expβ(π§ β π₯))) = (π§ β β β¦ (expβ(π§ β π₯)))) |
25 | 17, 19, 21, 23, 24 | offval2 6098 |
. . . . . . . 8
β’ (π₯ β β β ((β
Γ {(expβπ₯)})
βπ Β· (π§ β β β¦ (expβ(π§ β π₯)))) = (π§ β β β¦ ((expβπ₯) Β· (expβ(π§ β π₯))))) |
26 | 2 | a1i 9 |
. . . . . . . . 9
β’ (π₯ β β β
exp:ββΆβ) |
27 | 26 | feqmptd 5570 |
. . . . . . . 8
β’ (π₯ β β β exp =
(π§ β β β¦
(expβπ§))) |
28 | 16, 25, 27 | 3eqtr4d 2220 |
. . . . . . 7
β’ (π₯ β β β ((β
Γ {(expβπ₯)})
βπ Β· (π§ β β β¦ (expβ(π§ β π₯)))) = exp) |
29 | 28 | oveq2d 5891 |
. . . . . 6
β’ (π₯ β β β (β
D ((β Γ {(expβπ₯)}) βπ Β·
(π§ β β β¦
(expβ(π§ β π₯))))) = (β D
exp)) |
30 | | fconstg 5413 |
. . . . . . . . . 10
β’
((expβπ₯)
β β β (β Γ {(expβπ₯)}):ββΆ{(expβπ₯)}) |
31 | 18, 30 | syl 14 |
. . . . . . . . 9
β’ (π₯ β β β (β
Γ {(expβπ₯)}):ββΆ{(expβπ₯)}) |
32 | 18 | snssd 3738 |
. . . . . . . . 9
β’ (π₯ β β β
{(expβπ₯)} β
β) |
33 | 31, 32 | fssd 5379 |
. . . . . . . 8
β’ (π₯ β β β (β
Γ {(expβπ₯)}):ββΆβ) |
34 | | ssidd 3177 |
. . . . . . . 8
β’ (π₯ β β β β
β β) |
35 | 21 | fmpttd 5672 |
. . . . . . . 8
β’ (π₯ β β β (π§ β β β¦
(expβ(π§ β π₯))):ββΆβ) |
36 | | c0ex 7951 |
. . . . . . . . . . . 12
β’ 0 β
V |
37 | 36 | snid 3624 |
. . . . . . . . . . 11
β’ 0 β
{0} |
38 | | opelxpi 4659 |
. . . . . . . . . . 11
β’ ((π₯ β β β§ 0 β
{0}) β β¨π₯,
0β© β (β Γ {0})) |
39 | 37, 38 | mpan2 425 |
. . . . . . . . . 10
β’ (π₯ β β β
β¨π₯, 0β© β
(β Γ {0})) |
40 | | dvconst 14164 |
. . . . . . . . . . 11
β’
((expβπ₯)
β β β (β D (β Γ {(expβπ₯)})) = (β Γ
{0})) |
41 | 18, 40 | syl 14 |
. . . . . . . . . 10
β’ (π₯ β β β (β
D (β Γ {(expβπ₯)})) = (β Γ
{0})) |
42 | 39, 41 | eleqtrrd 2257 |
. . . . . . . . 9
β’ (π₯ β β β
β¨π₯, 0β© β
(β D (β Γ {(expβπ₯)}))) |
43 | | df-br 4005 |
. . . . . . . . 9
β’ (π₯(β D (β Γ
{(expβπ₯)}))0 β
β¨π₯, 0β© β
(β D (β Γ {(expβπ₯)}))) |
44 | 42, 43 | sylibr 134 |
. . . . . . . 8
β’ (π₯ β β β π₯(β D (β Γ
{(expβπ₯)}))0) |
45 | 26, 10 | cofmpt 5686 |
. . . . . . . . . 10
β’ (π₯ β β β (exp
β (π§ β β
β¦ (π§ β π₯))) = (π§ β β β¦ (expβ(π§ β π₯)))) |
46 | 45 | oveq2d 5891 |
. . . . . . . . 9
β’ (π₯ β β β (β
D (exp β (π§ β
β β¦ (π§ β
π₯)))) = (β D (π§ β β β¦
(expβ(π§ β π₯))))) |
47 | 10 | fmpttd 5672 |
. . . . . . . . . . 11
β’ (π₯ β β β (π§ β β β¦ (π§ β π₯)):ββΆβ) |
48 | | simpr 110 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ β β β§ π’ β β) β π’ β
β) |
49 | 48 | adantr 276 |
. . . . . . . . . . . . . . 15
β’ (((π₯ β β β§ π’ β β) β§ π’ # π₯) β π’ β β) |
50 | | simpl 109 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ β β β§ π’ β β) β π₯ β
β) |
51 | 50 | adantr 276 |
. . . . . . . . . . . . . . 15
β’ (((π₯ β β β§ π’ β β) β§ π’ # π₯) β π₯ β β) |
52 | | simpr 110 |
. . . . . . . . . . . . . . 15
β’ (((π₯ β β β§ π’ β β) β§ π’ # π₯) β π’ # π₯) |
53 | 49, 51, 52 | subap0d 8601 |
. . . . . . . . . . . . . 14
β’ (((π₯ β β β§ π’ β β) β§ π’ # π₯) β (π’ β π₯) # 0) |
54 | | eqid 2177 |
. . . . . . . . . . . . . . . . 17
β’ (π§ β β β¦ (π§ β π₯)) = (π§ β β β¦ (π§ β π₯)) |
55 | | oveq1 5882 |
. . . . . . . . . . . . . . . . 17
β’ (π§ = π’ β (π§ β π₯) = (π’ β π₯)) |
56 | | subcl 8156 |
. . . . . . . . . . . . . . . . . 18
β’ ((π’ β β β§ π₯ β β) β (π’ β π₯) β β) |
57 | 56 | ancoms 268 |
. . . . . . . . . . . . . . . . 17
β’ ((π₯ β β β§ π’ β β) β (π’ β π₯) β β) |
58 | 54, 55, 48, 57 | fvmptd3 5610 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ β β β§ π’ β β) β ((π§ β β β¦ (π§ β π₯))βπ’) = (π’ β π₯)) |
59 | | oveq1 5882 |
. . . . . . . . . . . . . . . . . 18
β’ (π§ = π₯ β (π§ β π₯) = (π₯ β π₯)) |
60 | | id 19 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π₯ β β β π₯ β
β) |
61 | 60, 60 | subcld 8268 |
. . . . . . . . . . . . . . . . . . 19
β’ (π₯ β β β (π₯ β π₯) β β) |
62 | 61 | adantr 276 |
. . . . . . . . . . . . . . . . . 18
β’ ((π₯ β β β§ π’ β β) β (π₯ β π₯) β β) |
63 | 54, 59, 50, 62 | fvmptd3 5610 |
. . . . . . . . . . . . . . . . 17
β’ ((π₯ β β β§ π’ β β) β ((π§ β β β¦ (π§ β π₯))βπ₯) = (π₯ β π₯)) |
64 | | subid 8176 |
. . . . . . . . . . . . . . . . . 18
β’ (π₯ β β β (π₯ β π₯) = 0) |
65 | 64 | adantr 276 |
. . . . . . . . . . . . . . . . 17
β’ ((π₯ β β β§ π’ β β) β (π₯ β π₯) = 0) |
66 | 63, 65 | eqtrd 2210 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ β β β§ π’ β β) β ((π§ β β β¦ (π§ β π₯))βπ₯) = 0) |
67 | 58, 66 | breq12d 4017 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β β β§ π’ β β) β (((π§ β β β¦ (π§ β π₯))βπ’) # ((π§ β β β¦ (π§ β π₯))βπ₯) β (π’ β π₯) # 0)) |
68 | 67 | adantr 276 |
. . . . . . . . . . . . . 14
β’ (((π₯ β β β§ π’ β β) β§ π’ # π₯) β (((π§ β β β¦ (π§ β π₯))βπ’) # ((π§ β β β¦ (π§ β π₯))βπ₯) β (π’ β π₯) # 0)) |
69 | 53, 68 | mpbird 167 |
. . . . . . . . . . . . 13
β’ (((π₯ β β β§ π’ β β) β§ π’ # π₯) β ((π§ β β β¦ (π§ β π₯))βπ’) # ((π§ β β β¦ (π§ β π₯))βπ₯)) |
70 | 69 | ex 115 |
. . . . . . . . . . . 12
β’ ((π₯ β β β§ π’ β β) β (π’ # π₯ β ((π§ β β β¦ (π§ β π₯))βπ’) # ((π§ β β β¦ (π§ β π₯))βπ₯))) |
71 | 70 | ralrimiva 2550 |
. . . . . . . . . . 11
β’ (π₯ β β β
βπ’ β β
(π’ # π₯ β ((π§ β β β¦ (π§ β π₯))βπ’) # ((π§ β β β¦ (π§ β π₯))βπ₯))) |
72 | 54, 59, 60, 61 | fvmptd3 5610 |
. . . . . . . . . . . . 13
β’ (π₯ β β β ((π§ β β β¦ (π§ β π₯))βπ₯) = (π₯ β π₯)) |
73 | 72, 64 | eqtrd 2210 |
. . . . . . . . . . . 12
β’ (π₯ β β β ((π§ β β β¦ (π§ β π₯))βπ₯) = 0) |
74 | | dveflem 14190 |
. . . . . . . . . . . 12
β’ 0(β
D exp)1 |
75 | 73, 74 | eqbrtrdi 4043 |
. . . . . . . . . . 11
β’ (π₯ β β β ((π§ β β β¦ (π§ β π₯))βπ₯)(β D exp)1) |
76 | | 1ex 7952 |
. . . . . . . . . . . . . . 15
β’ 1 β
V |
77 | 76 | snid 3624 |
. . . . . . . . . . . . . 14
β’ 1 β
{1} |
78 | | opelxpi 4659 |
. . . . . . . . . . . . . 14
β’ ((π₯ β β β§ 1 β
{1}) β β¨π₯,
1β© β (β Γ {1})) |
79 | 77, 78 | mpan2 425 |
. . . . . . . . . . . . 13
β’ (π₯ β β β
β¨π₯, 1β© β
(β Γ {1})) |
80 | | simpr 110 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β β β§ π§ β β) β π§ β
β) |
81 | | 1cnd 7973 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β β β§ π§ β β) β 1 β
β) |
82 | | dvmptidcn 14181 |
. . . . . . . . . . . . . . . 16
β’ (β
D (π§ β β β¦
π§)) = (π§ β β β¦ 1) |
83 | 82 | a1i 9 |
. . . . . . . . . . . . . . 15
β’ (π₯ β β β (β
D (π§ β β β¦
π§)) = (π§ β β β¦ 1)) |
84 | | simpl 109 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β β β§ π§ β β) β π₯ β
β) |
85 | | 0cnd 7950 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β β β§ π§ β β) β 0 β
β) |
86 | 60 | dvmptccn 14182 |
. . . . . . . . . . . . . . 15
β’ (π₯ β β β (β
D (π§ β β β¦
π₯)) = (π§ β β β¦ 0)) |
87 | 80, 81, 83, 84, 85, 86 | dvmptsubcn 14188 |
. . . . . . . . . . . . . 14
β’ (π₯ β β β (β
D (π§ β β β¦
(π§ β π₯))) = (π§ β β β¦ (1 β
0))) |
88 | | 1m0e1 9032 |
. . . . . . . . . . . . . . . 16
β’ (1
β 0) = 1 |
89 | 88 | mpteq2i 4091 |
. . . . . . . . . . . . . . 15
β’ (π§ β β β¦ (1
β 0)) = (π§ β
β β¦ 1) |
90 | | fconstmpt 4674 |
. . . . . . . . . . . . . . 15
β’ (β
Γ {1}) = (π§ β
β β¦ 1) |
91 | 89, 90 | eqtr4i 2201 |
. . . . . . . . . . . . . 14
β’ (π§ β β β¦ (1
β 0)) = (β Γ {1}) |
92 | 87, 91 | eqtrdi 2226 |
. . . . . . . . . . . . 13
β’ (π₯ β β β (β
D (π§ β β β¦
(π§ β π₯))) = (β Γ
{1})) |
93 | 79, 92 | eleqtrrd 2257 |
. . . . . . . . . . . 12
β’ (π₯ β β β
β¨π₯, 1β© β
(β D (π§ β
β β¦ (π§ β
π₯)))) |
94 | | df-br 4005 |
. . . . . . . . . . . 12
β’ (π₯(β D (π§ β β β¦ (π§ β π₯)))1 β β¨π₯, 1β© β (β D (π§ β β β¦ (π§ β π₯)))) |
95 | 93, 94 | sylibr 134 |
. . . . . . . . . . 11
β’ (π₯ β β β π₯(β D (π§ β β β¦ (π§ β π₯)))1) |
96 | | eqid 2177 |
. . . . . . . . . . 11
β’
(MetOpenβ(abs β β )) = (MetOpenβ(abs β
β )) |
97 | 26, 34, 47, 34, 71, 34, 34, 75, 95, 96 | dvcoapbr 14174 |
. . . . . . . . . 10
β’ (π₯ β β β π₯(β D (exp β (π§ β β β¦ (π§ β π₯))))(1 Β· 1)) |
98 | | 1t1e1 9071 |
. . . . . . . . . 10
β’ (1
Β· 1) = 1 |
99 | 97, 98 | breqtrdi 4045 |
. . . . . . . . 9
β’ (π₯ β β β π₯(β D (exp β (π§ β β β¦ (π§ β π₯))))1) |
100 | 46, 99 | breqdi 4019 |
. . . . . . . 8
β’ (π₯ β β β π₯(β D (π§ β β β¦ (expβ(π§ β π₯))))1) |
101 | 33, 34, 35, 34, 44, 100, 96 | dvmulxxbr 14169 |
. . . . . . 7
β’ (π₯ β β β π₯(β D ((β Γ
{(expβπ₯)})
βπ Β· (π§ β β β¦ (expβ(π§ β π₯)))))((0 Β· ((π§ β β β¦ (expβ(π§ β π₯)))βπ₯)) + (1 Β· ((β Γ
{(expβπ₯)})βπ₯)))) |
102 | 35, 60 | ffvelcdmd 5653 |
. . . . . . . . . 10
β’ (π₯ β β β ((π§ β β β¦
(expβ(π§ β π₯)))βπ₯) β β) |
103 | 102 | mul02d 8349 |
. . . . . . . . 9
β’ (π₯ β β β (0
Β· ((π§ β β
β¦ (expβ(π§
β π₯)))βπ₯)) = 0) |
104 | | fvconst2g 5731 |
. . . . . . . . . . . 12
β’
(((expβπ₯)
β β β§ π₯
β β) β ((β Γ {(expβπ₯)})βπ₯) = (expβπ₯)) |
105 | 18, 104 | mpancom 422 |
. . . . . . . . . . 11
β’ (π₯ β β β ((β
Γ {(expβπ₯)})βπ₯) = (expβπ₯)) |
106 | 105 | oveq2d 5891 |
. . . . . . . . . 10
β’ (π₯ β β β (1
Β· ((β Γ {(expβπ₯)})βπ₯)) = (1 Β· (expβπ₯))) |
107 | 18 | mulid2d 7976 |
. . . . . . . . . 10
β’ (π₯ β β β (1
Β· (expβπ₯)) =
(expβπ₯)) |
108 | 106, 107 | eqtrd 2210 |
. . . . . . . . 9
β’ (π₯ β β β (1
Β· ((β Γ {(expβπ₯)})βπ₯)) = (expβπ₯)) |
109 | 103, 108 | oveq12d 5893 |
. . . . . . . 8
β’ (π₯ β β β ((0
Β· ((π§ β β
β¦ (expβ(π§
β π₯)))βπ₯)) + (1 Β· ((β
Γ {(expβπ₯)})βπ₯))) = (0 + (expβπ₯))) |
110 | 18 | addid2d 8107 |
. . . . . . . 8
β’ (π₯ β β β (0 +
(expβπ₯)) =
(expβπ₯)) |
111 | 109, 110 | eqtrd 2210 |
. . . . . . 7
β’ (π₯ β β β ((0
Β· ((π§ β β
β¦ (expβ(π§
β π₯)))βπ₯)) + (1 Β· ((β
Γ {(expβπ₯)})βπ₯))) = (expβπ₯)) |
112 | 101, 111 | breqtrd 4030 |
. . . . . 6
β’ (π₯ β β β π₯(β D ((β Γ
{(expβπ₯)})
βπ Β· (π§ β β β¦ (expβ(π§ β π₯)))))(expβπ₯)) |
113 | 29, 112 | breqdi 4019 |
. . . . 5
β’ (π₯ β β β π₯(β D exp)(expβπ₯)) |
114 | | funbrfv 5555 |
. . . . 5
β’ (Fun
(β D exp) β (π₯(β D exp)(expβπ₯) β ((β D exp)βπ₯) = (expβπ₯))) |
115 | 8, 113, 114 | mpsyl 65 |
. . . 4
β’ (π₯ β β β ((β
D exp)βπ₯) =
(expβπ₯)) |
116 | 115 | mpteq2ia 4090 |
. . 3
β’ (π₯ β β β¦
((β D exp)βπ₯))
= (π₯ β β β¦
(expβπ₯)) |
117 | | ssid 3176 |
. . . . . . . . 9
β’ β
β β |
118 | | dvbsssg 14158 |
. . . . . . . . 9
β’ ((β
β β β§ exp β (β βpm β))
β dom (β D exp) β β) |
119 | 117, 4, 118 | mp2an 426 |
. . . . . . . 8
β’ dom
(β D exp) β β |
120 | | breldmg 4834 |
. . . . . . . . . 10
β’ ((π₯ β β β§
(expβπ₯) β
β β§ π₯(β D
exp)(expβπ₯)) β
π₯ β dom (β D
exp)) |
121 | 18, 113, 120 | mpd3an23 1339 |
. . . . . . . . 9
β’ (π₯ β β β π₯ β dom (β D
exp)) |
122 | 121 | ssriv 3160 |
. . . . . . . 8
β’ β
β dom (β D exp) |
123 | 119, 122 | eqssi 3172 |
. . . . . . 7
β’ dom
(β D exp) = β |
124 | 123 | feq2i 5360 |
. . . . . 6
β’ ((β
D exp):dom (β D exp)βΆβ β (β D
exp):ββΆβ) |
125 | 6, 124 | mpbi 145 |
. . . . 5
β’ (β
D exp):ββΆβ |
126 | 125 | a1i 9 |
. . . 4
β’ (β€
β (β D exp):ββΆβ) |
127 | 126 | feqmptd 5570 |
. . 3
β’ (β€
β (β D exp) = (π₯
β β β¦ ((β D exp)βπ₯))) |
128 | 2 | a1i 9 |
. . . 4
β’ (β€
β exp:ββΆβ) |
129 | 128 | feqmptd 5570 |
. . 3
β’ (β€
β exp = (π₯ β
β β¦ (expβπ₯))) |
130 | 116, 127,
129 | 3eqtr4a 2236 |
. 2
β’ (β€
β (β D exp) = exp) |
131 | 130 | mptru 1362 |
1
β’ (β
D exp) = exp |