![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-br | GIF version |
Description: Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. This definition of relations is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets). On the other hand, we often find uses for this definition when 𝑅 is a proper class (see for example iprc 4930). (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
df-br | ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cR | . . 3 class 𝑅 | |
4 | 1, 2, 3 | wbr 4029 | . 2 wff 𝐴𝑅𝐵 |
5 | 1, 2 | cop 3621 | . . 3 class 〈𝐴, 𝐵〉 |
6 | 5, 3 | wcel 2164 | . 2 wff 〈𝐴, 𝐵〉 ∈ 𝑅 |
7 | 4, 6 | wb 105 | 1 wff (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
Colors of variables: wff set class |
This definition is referenced by: breq 4031 breq1 4032 breq2 4033 ssbrd 4072 nfbrd 4074 br0 4077 brne0 4078 brm 4079 brun 4080 brin 4081 brdif 4082 opabss 4093 brabsb 4291 brabga 4294 epelg 4321 pofun 4343 brxp 4690 brab2a 4712 brab2ga 4734 eqbrriv 4754 eqbrrdv 4756 eqbrrdiv 4757 opeliunxp2 4802 opelco2g 4830 opelco 4834 cnvss 4835 elcnv2 4840 opelcnvg 4842 brcnvg 4843 dfdm3 4849 dfrn3 4851 elrng 4853 eldm2g 4858 breldm 4866 dmopab 4873 opelrng 4894 opelrn 4896 elrn 4905 rnopab 4909 brres 4948 brresg 4950 resieq 4952 opelresi 4953 resiexg 4987 iss 4988 dfres2 4994 restidsing 4998 dfima3 5008 elima3 5012 imai 5021 elimasn 5032 eliniseg 5035 cotr 5047 issref 5048 cnvsym 5049 intasym 5050 asymref 5051 intirr 5052 codir 5054 qfto 5055 poirr2 5058 dmsnm 5131 coiun 5175 co02 5179 coi1 5181 dffun4 5265 dffun4f 5270 funeu2 5280 funopab 5289 funco 5294 funcnvsn 5299 isarep1 5340 fnop 5357 fneu2 5359 brprcneu 5547 dffv3g 5550 tz6.12 5582 nfvres 5588 0fv 5590 funopfv 5596 fnopfvb 5598 fvmptss2 5632 funfvbrb 5671 dff3im 5703 dff4im 5704 f1ompt 5709 idref 5799 foeqcnvco 5833 f1eqcocnv 5834 fliftel 5836 fliftel1 5837 fliftcnv 5838 f1oiso 5869 ovprc 5953 brabvv 5964 1st2ndbr 6237 xporderlem 6284 opeliunxp2f 6291 rbropapd 6295 ottposg 6308 dftpos3 6315 dftpos4 6316 tposoprab 6333 tfrlem7 6370 tfrexlem 6387 ercnv 6608 brdifun 6614 swoord1 6616 swoord2 6617 0er 6621 elecg 6627 iinerm 6661 brecop 6679 idssen 6831 xpcomco 6880 netap 7314 2omotaplemap 7317 exmidapne 7320 ltdfpr 7566 xrlenlt 8084 aprcl 8665 frecuzrdgtcl 10483 frecuzrdgfunlem 10490 climcau 11490 divides 11932 isstructim 12632 isstructr 12633 imasaddfnlemg 12897 subrgdvds 13731 aprval 13778 lmrcl 14359 lmff 14417 xmeterval 14603 eldvap 14836 dvef 14873 |
Copyright terms: Public domain | W3C validator |