| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-br | GIF version | ||
| Description: Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. This definition of relations is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets). On the other hand, we often find uses for this definition when 𝑅 is a proper class (see for example iprc 4993). (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| df-br | ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cR | . . 3 class 𝑅 | |
| 4 | 1, 2, 3 | wbr 4083 | . 2 wff 𝐴𝑅𝐵 |
| 5 | 1, 2 | cop 3669 | . . 3 class 〈𝐴, 𝐵〉 |
| 6 | 5, 3 | wcel 2200 | . 2 wff 〈𝐴, 𝐵〉 ∈ 𝑅 |
| 7 | 4, 6 | wb 105 | 1 wff (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Colors of variables: wff set class |
| This definition is referenced by: breq 4085 breq1 4086 breq2 4087 ssbrd 4126 nfbrd 4129 br0 4132 brne0 4133 brm 4134 brun 4135 brin 4136 brdif 4137 opabss 4148 brabsb 4349 brabga 4352 epelg 4381 pofun 4403 brxp 4750 brab2a 4772 brab2ga 4794 eqbrriv 4814 eqbrrdv 4816 eqbrrdiv 4817 opeliunxp2 4862 opelco2g 4890 opelco 4894 cnvss 4895 elcnv2 4900 opelcnvg 4902 brcnvg 4903 dfdm3 4909 dfrn3 4911 elrng 4913 eldm2g 4919 breldm 4927 dmopab 4934 opelrng 4956 opelrn 4958 elrn 4967 rnopab 4971 brres 5011 brresg 5013 resieq 5015 opelresi 5016 resiexg 5050 iss 5051 dfres2 5057 restidsing 5061 dfima3 5071 elima3 5075 imai 5084 elimasn 5095 eliniseg 5098 cotr 5110 issref 5111 cnvsym 5112 intasym 5113 asymref 5114 intirr 5115 codir 5117 qfto 5118 poirr2 5121 dmsnm 5194 coiun 5238 co02 5242 coi1 5244 dffun4 5329 dffun4f 5334 funeu2 5344 funopab 5353 funco 5358 funcnvsn 5366 isarep1 5407 fnop 5426 fneu2 5428 brprcneu 5620 dffv3g 5623 tz6.12 5655 nfvres 5663 0fv 5665 funopfv 5671 fnopfvb 5673 fvmptss2 5709 funfvbrb 5748 dff3im 5780 dff4im 5781 f1ompt 5786 idref 5880 foeqcnvco 5914 f1eqcocnv 5915 fliftel 5917 fliftel1 5918 fliftcnv 5919 f1oiso 5950 ovprc 6037 brabvv 6050 1st2ndbr 6330 xporderlem 6377 opeliunxp2f 6384 rbropapd 6388 ottposg 6401 dftpos3 6408 dftpos4 6409 tposoprab 6426 tfrlem7 6463 tfrexlem 6480 ercnv 6701 brdifun 6707 swoord1 6709 swoord2 6710 0er 6714 elecg 6720 iinerm 6754 brecop 6772 idssen 6928 xpcomco 6985 netap 7440 2omotaplemap 7443 exmidapne 7446 ltdfpr 7693 xrlenlt 8211 aprcl 8793 frecuzrdgtcl 10634 frecuzrdgfunlem 10641 climcau 11858 divides 12300 isstructim 13046 isstructr 13047 imasaddfnlemg 13347 subrgdvds 14199 aprval 14246 lmrcl 14866 lmff 14923 xmeterval 15109 eldvap 15356 dvef 15401 iswlk 16036 wlkv 16038 wlkcprim 16061 wlklenvclwlk 16084 |
| Copyright terms: Public domain | W3C validator |