Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-br | GIF version |
Description: Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. This definition of relations is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets). On the other hand, we often find uses for this definition when 𝑅 is a proper class (see for example iprc 4871). (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
df-br | ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cR | . . 3 class 𝑅 | |
4 | 1, 2, 3 | wbr 3981 | . 2 wff 𝐴𝑅𝐵 |
5 | 1, 2 | cop 3578 | . . 3 class 〈𝐴, 𝐵〉 |
6 | 5, 3 | wcel 2136 | . 2 wff 〈𝐴, 𝐵〉 ∈ 𝑅 |
7 | 4, 6 | wb 104 | 1 wff (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
Colors of variables: wff set class |
This definition is referenced by: breq 3983 breq1 3984 breq2 3985 ssbrd 4024 nfbrd 4026 br0 4029 brne0 4030 brm 4031 brun 4032 brin 4033 brdif 4034 opabss 4045 brabsb 4238 brabga 4241 epelg 4267 pofun 4289 brxp 4634 brab2a 4656 brab2ga 4678 eqbrriv 4698 eqbrrdv 4700 eqbrrdiv 4701 opeliunxp2 4743 opelco2g 4771 opelco 4775 cnvss 4776 elcnv2 4781 opelcnvg 4783 brcnvg 4784 dfdm3 4790 dfrn3 4792 elrng 4794 eldm2g 4799 breldm 4807 dmopab 4814 opelrng 4835 opelrn 4837 elrn 4846 rnopab 4850 brres 4889 brresg 4891 resieq 4893 opelresi 4894 resiexg 4928 iss 4929 dfres2 4935 dfima3 4948 elima3 4952 imai 4959 elimasn 4970 eliniseg 4973 cotr 4984 issref 4985 cnvsym 4986 intasym 4987 asymref 4988 intirr 4989 codir 4991 qfto 4992 poirr2 4995 dmsnm 5068 coiun 5112 co02 5116 coi1 5118 dffun4 5198 dffun4f 5203 funeu2 5213 funopab 5222 funco 5227 funcnvsn 5232 isarep1 5273 fnop 5290 fneu2 5292 brprcneu 5478 dffv3g 5481 tz6.12 5513 nfvres 5518 0fv 5520 funopfv 5525 fnopfvb 5527 fvmptss2 5560 funfvbrb 5597 dff3im 5629 dff4im 5630 f1ompt 5635 idref 5724 foeqcnvco 5757 f1eqcocnv 5758 fliftel 5760 fliftel1 5761 fliftcnv 5762 f1oiso 5793 ovprc 5873 brabvv 5884 1st2ndbr 6149 xporderlem 6195 opeliunxp2f 6202 rbropapd 6206 ottposg 6219 dftpos3 6226 dftpos4 6227 tposoprab 6244 tfrlem7 6281 tfrexlem 6298 ercnv 6518 brdifun 6524 swoord1 6526 swoord2 6527 0er 6531 elecg 6535 iinerm 6569 brecop 6587 idssen 6739 xpcomco 6788 ltdfpr 7443 xrlenlt 7959 aprcl 8540 frecuzrdgtcl 10343 frecuzrdgfunlem 10350 climcau 11284 divides 11725 isstructim 12404 isstructr 12405 lmrcl 12791 lmff 12849 xmeterval 13035 eldvap 13251 dvef 13288 |
Copyright terms: Public domain | W3C validator |