| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-br | GIF version | ||
| Description: Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. This definition of relations is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets). On the other hand, we often find uses for this definition when 𝑅 is a proper class (see for example iprc 4947). (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| df-br | ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cR | . . 3 class 𝑅 | |
| 4 | 1, 2, 3 | wbr 4044 | . 2 wff 𝐴𝑅𝐵 |
| 5 | 1, 2 | cop 3636 | . . 3 class 〈𝐴, 𝐵〉 |
| 6 | 5, 3 | wcel 2176 | . 2 wff 〈𝐴, 𝐵〉 ∈ 𝑅 |
| 7 | 4, 6 | wb 105 | 1 wff (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Colors of variables: wff set class |
| This definition is referenced by: breq 4046 breq1 4047 breq2 4048 ssbrd 4087 nfbrd 4089 br0 4092 brne0 4093 brm 4094 brun 4095 brin 4096 brdif 4097 opabss 4108 brabsb 4307 brabga 4310 epelg 4337 pofun 4359 brxp 4706 brab2a 4728 brab2ga 4750 eqbrriv 4770 eqbrrdv 4772 eqbrrdiv 4773 opeliunxp2 4818 opelco2g 4846 opelco 4850 cnvss 4851 elcnv2 4856 opelcnvg 4858 brcnvg 4859 dfdm3 4865 dfrn3 4867 elrng 4869 eldm2g 4874 breldm 4882 dmopab 4889 opelrng 4910 opelrn 4912 elrn 4921 rnopab 4925 brres 4965 brresg 4967 resieq 4969 opelresi 4970 resiexg 5004 iss 5005 dfres2 5011 restidsing 5015 dfima3 5025 elima3 5029 imai 5038 elimasn 5049 eliniseg 5052 cotr 5064 issref 5065 cnvsym 5066 intasym 5067 asymref 5068 intirr 5069 codir 5071 qfto 5072 poirr2 5075 dmsnm 5148 coiun 5192 co02 5196 coi1 5198 dffun4 5282 dffun4f 5287 funeu2 5297 funopab 5306 funco 5311 funcnvsn 5319 isarep1 5360 fnop 5379 fneu2 5381 brprcneu 5569 dffv3g 5572 tz6.12 5604 nfvres 5610 0fv 5612 funopfv 5618 fnopfvb 5620 fvmptss2 5654 funfvbrb 5693 dff3im 5725 dff4im 5726 f1ompt 5731 idref 5825 foeqcnvco 5859 f1eqcocnv 5860 fliftel 5862 fliftel1 5863 fliftcnv 5864 f1oiso 5895 ovprc 5980 brabvv 5991 1st2ndbr 6270 xporderlem 6317 opeliunxp2f 6324 rbropapd 6328 ottposg 6341 dftpos3 6348 dftpos4 6349 tposoprab 6366 tfrlem7 6403 tfrexlem 6420 ercnv 6641 brdifun 6647 swoord1 6649 swoord2 6650 0er 6654 elecg 6660 iinerm 6694 brecop 6712 idssen 6868 xpcomco 6921 netap 7366 2omotaplemap 7369 exmidapne 7372 ltdfpr 7619 xrlenlt 8137 aprcl 8719 frecuzrdgtcl 10557 frecuzrdgfunlem 10564 climcau 11658 divides 12100 isstructim 12846 isstructr 12847 imasaddfnlemg 13146 subrgdvds 13997 aprval 14044 lmrcl 14663 lmff 14721 xmeterval 14907 eldvap 15154 dvef 15199 |
| Copyright terms: Public domain | W3C validator |