| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-br | GIF version | ||
| Description: Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. This definition of relations is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets). On the other hand, we often find uses for this definition when 𝑅 is a proper class (see for example iprc 4966). (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| df-br | ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cR | . . 3 class 𝑅 | |
| 4 | 1, 2, 3 | wbr 4059 | . 2 wff 𝐴𝑅𝐵 |
| 5 | 1, 2 | cop 3646 | . . 3 class 〈𝐴, 𝐵〉 |
| 6 | 5, 3 | wcel 2178 | . 2 wff 〈𝐴, 𝐵〉 ∈ 𝑅 |
| 7 | 4, 6 | wb 105 | 1 wff (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Colors of variables: wff set class |
| This definition is referenced by: breq 4061 breq1 4062 breq2 4063 ssbrd 4102 nfbrd 4105 br0 4108 brne0 4109 brm 4110 brun 4111 brin 4112 brdif 4113 opabss 4124 brabsb 4325 brabga 4328 epelg 4355 pofun 4377 brxp 4724 brab2a 4746 brab2ga 4768 eqbrriv 4788 eqbrrdv 4790 eqbrrdiv 4791 opeliunxp2 4836 opelco2g 4864 opelco 4868 cnvss 4869 elcnv2 4874 opelcnvg 4876 brcnvg 4877 dfdm3 4883 dfrn3 4885 elrng 4887 eldm2g 4893 breldm 4901 dmopab 4908 opelrng 4929 opelrn 4931 elrn 4940 rnopab 4944 brres 4984 brresg 4986 resieq 4988 opelresi 4989 resiexg 5023 iss 5024 dfres2 5030 restidsing 5034 dfima3 5044 elima3 5048 imai 5057 elimasn 5068 eliniseg 5071 cotr 5083 issref 5084 cnvsym 5085 intasym 5086 asymref 5087 intirr 5088 codir 5090 qfto 5091 poirr2 5094 dmsnm 5167 coiun 5211 co02 5215 coi1 5217 dffun4 5301 dffun4f 5306 funeu2 5316 funopab 5325 funco 5330 funcnvsn 5338 isarep1 5379 fnop 5398 fneu2 5400 brprcneu 5592 dffv3g 5595 tz6.12 5627 nfvres 5633 0fv 5635 funopfv 5641 fnopfvb 5643 fvmptss2 5677 funfvbrb 5716 dff3im 5748 dff4im 5749 f1ompt 5754 idref 5848 foeqcnvco 5882 f1eqcocnv 5883 fliftel 5885 fliftel1 5886 fliftcnv 5887 f1oiso 5918 ovprc 6003 brabvv 6014 1st2ndbr 6293 xporderlem 6340 opeliunxp2f 6347 rbropapd 6351 ottposg 6364 dftpos3 6371 dftpos4 6372 tposoprab 6389 tfrlem7 6426 tfrexlem 6443 ercnv 6664 brdifun 6670 swoord1 6672 swoord2 6673 0er 6677 elecg 6683 iinerm 6717 brecop 6735 idssen 6891 xpcomco 6946 netap 7401 2omotaplemap 7404 exmidapne 7407 ltdfpr 7654 xrlenlt 8172 aprcl 8754 frecuzrdgtcl 10594 frecuzrdgfunlem 10601 climcau 11773 divides 12215 isstructim 12961 isstructr 12962 imasaddfnlemg 13261 subrgdvds 14112 aprval 14159 lmrcl 14778 lmff 14836 xmeterval 15022 eldvap 15269 dvef 15314 |
| Copyright terms: Public domain | W3C validator |