![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-br | GIF version |
Description: Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. This definition of relations is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets). On the other hand, we often find uses for this definition when 𝑅 is a proper class (see for example iprc 4743). (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
df-br | ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cR | . . 3 class 𝑅 | |
4 | 1, 2, 3 | wbr 3875 | . 2 wff 𝐴𝑅𝐵 |
5 | 1, 2 | cop 3477 | . . 3 class 〈𝐴, 𝐵〉 |
6 | 5, 3 | wcel 1448 | . 2 wff 〈𝐴, 𝐵〉 ∈ 𝑅 |
7 | 4, 6 | wb 104 | 1 wff (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
Colors of variables: wff set class |
This definition is referenced by: breq 3877 breq1 3878 breq2 3879 ssbrd 3916 nfbrd 3918 brun 3921 brin 3922 brdif 3923 opabss 3932 brabsb 4121 brabga 4124 epelg 4150 pofun 4172 brxp 4508 brab2a 4530 brab2ga 4552 eqbrriv 4572 eqbrrdv 4574 eqbrrdiv 4575 opeliunxp2 4617 opelco2g 4645 opelco 4649 cnvss 4650 elcnv2 4655 opelcnvg 4657 brcnvg 4658 dfdm3 4664 dfrn3 4666 elrng 4668 eldm2g 4673 breldm 4681 dmopab 4688 opelrng 4709 opelrn 4711 elrn 4720 rnopab 4724 brres 4761 brresg 4763 resieq 4765 opelresi 4766 resiexg 4800 iss 4801 dfres2 4807 dfima3 4820 elima3 4824 imai 4831 elimasn 4842 eliniseg 4845 cotr 4856 issref 4857 cnvsym 4858 intasym 4859 asymref 4860 intirr 4861 codir 4863 qfto 4864 poirr2 4867 dmsnm 4940 coiun 4984 co02 4988 coi1 4990 dffun4 5070 dffun4f 5075 funeu2 5085 funopab 5094 funco 5099 funcnvsn 5104 isarep1 5145 fnop 5162 fneu2 5164 brprcneu 5346 dffv3g 5349 tz6.12 5381 nfvres 5386 0fv 5388 funopfv 5393 fnopfvb 5395 fvmptss2 5428 funfvbrb 5465 dff3im 5497 dff4im 5498 f1ompt 5503 idref 5590 foeqcnvco 5623 f1eqcocnv 5624 fliftel 5626 fliftel1 5627 fliftcnv 5628 f1oiso 5659 ovprc 5738 brabvv 5749 1st2ndbr 6012 xporderlem 6058 opeliunxp2f 6065 rbropapd 6069 ottposg 6082 dftpos3 6089 dftpos4 6090 tposoprab 6107 tfrlem7 6144 tfrexlem 6161 ercnv 6380 brdifun 6386 swoord1 6388 swoord2 6389 0er 6393 elecg 6397 iinerm 6431 brecop 6449 idssen 6601 xpcomco 6649 ltdfpr 7215 xrlenlt 7701 frecuzrdgtcl 10026 frecuzrdgfunlem 10033 climcau 10955 divides 11290 isstructim 11755 isstructr 11756 lmrcl 12142 lmff 12199 xmeterval 12363 eldvap 12524 |
Copyright terms: Public domain | W3C validator |