Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breq123d | GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breq123d.2 | ⊢ (𝜑 → 𝑅 = 𝑆) |
breq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breq123d | ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | 1, 2 | breq12d 3995 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
4 | breq123d.2 | . . 3 ⊢ (𝜑 → 𝑅 = 𝑆) | |
5 | 4 | breqd 3993 | . 2 ⊢ (𝜑 → (𝐵𝑅𝐷 ↔ 𝐵𝑆𝐷)) |
6 | 3, 5 | bitrd 187 | 1 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑆𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: sbcbrg 4036 fmptco 5651 |
Copyright terms: Public domain | W3C validator |