ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq123d GIF version

Theorem breq123d 4058
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
Hypotheses
Ref Expression
breq1d.1 (𝜑𝐴 = 𝐵)
breq123d.2 (𝜑𝑅 = 𝑆)
breq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
breq123d (𝜑 → (𝐴𝑅𝐶𝐵𝑆𝐷))

Proof of Theorem breq123d
StepHypRef Expression
1 breq1d.1 . . 3 (𝜑𝐴 = 𝐵)
2 breq123d.3 . . 3 (𝜑𝐶 = 𝐷)
31, 2breq12d 4057 . 2 (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐷))
4 breq123d.2 . . 3 (𝜑𝑅 = 𝑆)
54breqd 4055 . 2 (𝜑 → (𝐵𝑅𝐷𝐵𝑆𝐷))
63, 5bitrd 188 1 (𝜑 → (𝐴𝑅𝐶𝐵𝑆𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373   class class class wbr 4044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045
This theorem is referenced by:  sbcbrg  4098  fmptco  5746
  Copyright terms: Public domain W3C validator