ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqdi Unicode version

Theorem breqdi 4074
Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.)
Hypotheses
Ref Expression
breq1d.1  |-  ( ph  ->  A  =  B )
breqdi.1  |-  ( ph  ->  C A D )
Assertion
Ref Expression
breqdi  |-  ( ph  ->  C B D )

Proof of Theorem breqdi
StepHypRef Expression
1 breqdi.1 . 2  |-  ( ph  ->  C A D )
2 breq1d.1 . . 3  |-  ( ph  ->  A  =  B )
32breqd 4070 . 2  |-  ( ph  ->  ( C A D  <-> 
C B D ) )
41, 3mpbid 147 1  |-  ( ph  ->  C B D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-clel 2203  df-br 4060
This theorem is referenced by:  dvef  15314
  Copyright terms: Public domain W3C validator