ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqdi Unicode version

Theorem breqdi 4004
Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.)
Hypotheses
Ref Expression
breq1d.1  |-  ( ph  ->  A  =  B )
breqdi.1  |-  ( ph  ->  C A D )
Assertion
Ref Expression
breqdi  |-  ( ph  ->  C B D )

Proof of Theorem breqdi
StepHypRef Expression
1 breqdi.1 . 2  |-  ( ph  ->  C A D )
2 breq1d.1 . . 3  |-  ( ph  ->  A  =  B )
32breqd 4000 . 2  |-  ( ph  ->  ( C A D  <-> 
C B D ) )
41, 3mpbid 146 1  |-  ( ph  ->  C B D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166  df-br 3990
This theorem is referenced by:  dvef  13482
  Copyright terms: Public domain W3C validator