| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpg | GIF version | ||
| Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
| mpg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| mpg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpg.2 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1473 | . 2 ⊢ ∀𝑥𝜑 |
| 3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1473 |
| This theorem is referenced by: alimi 1479 albii 1494 a5i 1567 nfal 1600 eximi 1624 exbii 1629 19.9h 1667 hbn 1678 chvarfv 1724 chvar 1781 equsb1 1809 equsb2 1810 chvarvv 1933 chvarv 1966 moimi 2120 2eumo 2143 vtoclf 2827 vtocl2 2829 vtocl3 2830 spcimgf 2854 spcimegf 2855 spcgf 2856 spcegf 2857 mosub 2952 csbexa 4177 nalset 4178 ssopab2i 4328 pwnex 4500 eusv2nf 4507 iotabii 5260 fvmptss2 5661 eufnfv 5822 riotaexg 5910 xpcomco 6928 bj-ex 15772 ch2var 15777 bj-vtoclgf 15786 elabgf1 15789 bj-rspg 15797 sumdc2 15809 bdsepnf 15898 bj-nalset 15905 setindf 15976 strcollnf 15995 |
| Copyright terms: Public domain | W3C validator |