![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpg | GIF version |
Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
mpg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
mpg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpg.2 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1459 | . 2 ⊢ ∀𝑥𝜑 |
3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1361 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1459 |
This theorem is referenced by: alimi 1465 albii 1480 a5i 1553 nfal 1586 eximi 1610 exbii 1615 19.9h 1653 hbn 1664 chvarfv 1710 chvar 1767 equsb1 1795 equsb2 1796 chvarvv 1918 chvarv 1947 moimi 2101 2eumo 2124 vtoclf 2802 vtocl2 2804 vtocl3 2805 spcimgf 2829 spcimegf 2830 spcgf 2831 spcegf 2832 mosub 2927 csbexa 4144 nalset 4145 ssopab2i 4289 pwnex 4461 eusv2nf 4468 iotabii 5212 fvmptss2 5604 eufnfv 5760 riotaexg 5848 xpcomco 6840 bj-ex 14810 ch2var 14815 bj-vtoclgf 14824 elabgf1 14827 bj-rspg 14835 sumdc2 14847 bdsepnf 14936 bj-nalset 14943 setindf 15014 strcollnf 15033 |
Copyright terms: Public domain | W3C validator |