| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpg | GIF version | ||
| Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
| mpg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| mpg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpg.2 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1495 | . 2 ⊢ ∀𝑥𝜑 |
| 3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1495 |
| This theorem is referenced by: alimi 1501 albii 1516 a5i 1589 nfal 1622 eximi 1646 exbii 1651 19.9h 1689 hbn 1700 chvarfv 1746 chvar 1803 equsb1 1831 equsb2 1832 chvarvv 1955 chvarv 1988 moimi 2143 2eumo 2166 vtoclf 2854 vtocl2 2856 vtocl3 2857 spcimgf 2883 spcimegf 2884 spcgf 2885 spcegf 2886 mosub 2981 csbexa 4213 nalset 4214 ssopab2i 4366 pwnex 4540 eusv2nf 4547 iotabii 5302 fvmptss2 5711 eufnfv 5874 riotaexg 5964 xpcomco 6993 bj-ex 16150 ch2var 16155 bj-vtoclgf 16164 elabgf1 16167 bj-rspg 16175 sumdc2 16187 bdsepnf 16275 bj-nalset 16282 setindf 16353 strcollnf 16372 |
| Copyright terms: Public domain | W3C validator |