Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpg | GIF version |
Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
mpg.1 | ⊢ (∀𝑥𝜑 → 𝜓) |
mpg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
mpg | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpg.2 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1442 | . 2 ⊢ ∀𝑥𝜑 |
3 | mpg.1 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-gen 1442 |
This theorem is referenced by: alimi 1448 albii 1463 a5i 1536 nfal 1569 eximi 1593 exbii 1598 19.9h 1636 hbn 1647 chvarfv 1693 chvar 1750 equsb1 1778 equsb2 1779 chvarvv 1901 chvarv 1930 moimi 2084 2eumo 2107 vtoclf 2783 vtocl2 2785 vtocl3 2786 spcimgf 2810 spcimegf 2811 spcgf 2812 spcegf 2813 mosub 2908 csbexa 4118 nalset 4119 ssopab2i 4262 pwnex 4434 eusv2nf 4441 iotabii 5182 fvmptss2 5571 eufnfv 5726 riotaexg 5813 xpcomco 6804 bj-ex 13797 ch2var 13802 bj-vtoclgf 13811 elabgf1 13814 bj-rspg 13822 sumdc2 13834 bdsepnf 13923 bj-nalset 13930 setindf 14001 strcollnf 14020 |
Copyright terms: Public domain | W3C validator |