ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2d GIF version

Theorem con2d 625
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.)
Hypothesis
Ref Expression
con2d.1 (𝜑 → (𝜓 → ¬ 𝜒))
Assertion
Ref Expression
con2d (𝜑 → (𝜒 → ¬ 𝜓))

Proof of Theorem con2d
StepHypRef Expression
1 con2d.1 . . . 4 (𝜑 → (𝜓 → ¬ 𝜒))
2 ax-in2 616 . . . 4 𝜒 → (𝜒 → ¬ 𝜓))
31, 2syl6 33 . . 3 (𝜑 → (𝜓 → (𝜒 → ¬ 𝜓)))
43com23 78 . 2 (𝜑 → (𝜒 → (𝜓 → ¬ 𝜓)))
5 pm2.01 617 . 2 ((𝜓 → ¬ 𝜓) → ¬ 𝜓)
64, 5syl6 33 1 (𝜑 → (𝜒 → ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 615  ax-in2 616
This theorem is referenced by:  mt2d  626  con3d  632  pm3.2im  638  con2  644  pm2.65  661  con1biimdc  875  exists2  2152  necon2ad  2434  necon2bd  2435  minel  3523  nlimsucg  4618  poirr2  5080  funun  5320  imadif  5359  infnlbti  7135  mkvprop  7267  addnidpig  7456  zltnle  9425  zdcle  9456  btwnnz  9474  prime  9479  icc0r  10055  fznlem  10170  qltnle  10393  bcval4  10904  seq3coll  10994  swrd0g  11121  fsum3cvg  11733  fsumsplit  11762  fproddccvg  11927  fprodsplitdc  11951  bitsinv1lem  12316  2sqpwodd  12542  pockthg  12724  prmunb  12729  logbgcd1irr  15483  lgsne0  15559
  Copyright terms: Public domain W3C validator