ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2d GIF version

Theorem con2d 625
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.)
Hypothesis
Ref Expression
con2d.1 (𝜑 → (𝜓 → ¬ 𝜒))
Assertion
Ref Expression
con2d (𝜑 → (𝜒 → ¬ 𝜓))

Proof of Theorem con2d
StepHypRef Expression
1 con2d.1 . . . 4 (𝜑 → (𝜓 → ¬ 𝜒))
2 ax-in2 616 . . . 4 𝜒 → (𝜒 → ¬ 𝜓))
31, 2syl6 33 . . 3 (𝜑 → (𝜓 → (𝜒 → ¬ 𝜓)))
43com23 78 . 2 (𝜑 → (𝜒 → (𝜓 → ¬ 𝜓)))
5 pm2.01 617 . 2 ((𝜓 → ¬ 𝜓) → ¬ 𝜓)
64, 5syl6 33 1 (𝜑 → (𝜒 → ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 615  ax-in2 616
This theorem is referenced by:  mt2d  626  con3d  632  pm3.2im  638  con2  644  pm2.65  660  con1biimdc  874  exists2  2142  necon2ad  2424  necon2bd  2425  minel  3513  nlimsucg  4603  poirr2  5063  funun  5303  imadif  5339  infnlbti  7101  mkvprop  7233  addnidpig  7420  zltnle  9389  zdcle  9419  btwnnz  9437  prime  9442  icc0r  10018  fznlem  10133  qltnle  10350  bcval4  10861  seq3coll  10951  fsum3cvg  11560  fsumsplit  11589  fproddccvg  11754  fprodsplitdc  11778  bitsinv1lem  12143  2sqpwodd  12369  pockthg  12551  prmunb  12556  logbgcd1irr  15287  lgsne0  15363
  Copyright terms: Public domain W3C validator