Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con2d | GIF version |
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
Ref | Expression |
---|---|
con2d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
Ref | Expression |
---|---|
con2d | ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
2 | ax-in2 605 | . . . 4 ⊢ (¬ 𝜒 → (𝜒 → ¬ 𝜓)) | |
3 | 1, 2 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → ¬ 𝜓))) |
4 | 3 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → ¬ 𝜓))) |
5 | pm2.01 606 | . 2 ⊢ ((𝜓 → ¬ 𝜓) → ¬ 𝜓) | |
6 | 4, 5 | syl6 33 | 1 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 |
This theorem is referenced by: mt2d 615 con3d 621 pm3.2im 627 con2 633 pm2.65 649 con1biimdc 863 exists2 2111 necon2ad 2393 necon2bd 2394 minel 3470 nlimsucg 4543 poirr2 4996 funun 5232 imadif 5268 infnlbti 6991 mkvprop 7122 addnidpig 7277 zltnle 9237 zdcle 9267 btwnnz 9285 prime 9290 icc0r 9862 fznlem 9976 qltnle 10181 bcval4 10665 seq3coll 10755 fsum3cvg 11319 fsumsplit 11348 fproddccvg 11513 fprodsplitdc 11537 2sqpwodd 12108 pockthg 12287 prmunb 12292 logbgcd1irr 13525 lgsne0 13579 |
Copyright terms: Public domain | W3C validator |