ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2d GIF version

Theorem con2d 625
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.)
Hypothesis
Ref Expression
con2d.1 (𝜑 → (𝜓 → ¬ 𝜒))
Assertion
Ref Expression
con2d (𝜑 → (𝜒 → ¬ 𝜓))

Proof of Theorem con2d
StepHypRef Expression
1 con2d.1 . . . 4 (𝜑 → (𝜓 → ¬ 𝜒))
2 ax-in2 616 . . . 4 𝜒 → (𝜒 → ¬ 𝜓))
31, 2syl6 33 . . 3 (𝜑 → (𝜓 → (𝜒 → ¬ 𝜓)))
43com23 78 . 2 (𝜑 → (𝜒 → (𝜓 → ¬ 𝜓)))
5 pm2.01 617 . 2 ((𝜓 → ¬ 𝜓) → ¬ 𝜓)
64, 5syl6 33 1 (𝜑 → (𝜒 → ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 615  ax-in2 616
This theorem is referenced by:  mt2d  626  con3d  632  pm3.2im  638  con2  644  pm2.65  660  con1biimdc  874  exists2  2142  necon2ad  2424  necon2bd  2425  minel  3513  nlimsucg  4603  poirr2  5063  funun  5303  imadif  5339  infnlbti  7101  mkvprop  7233  addnidpig  7422  zltnle  9391  zdcle  9421  btwnnz  9439  prime  9444  icc0r  10020  fznlem  10135  qltnle  10352  bcval4  10863  seq3coll  10953  fsum3cvg  11562  fsumsplit  11591  fproddccvg  11756  fprodsplitdc  11780  bitsinv1lem  12145  2sqpwodd  12371  pockthg  12553  prmunb  12558  logbgcd1irr  15289  lgsne0  15365
  Copyright terms: Public domain W3C validator