Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con2d | GIF version |
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
Ref | Expression |
---|---|
con2d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
Ref | Expression |
---|---|
con2d | ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
2 | ax-in2 605 | . . . 4 ⊢ (¬ 𝜒 → (𝜒 → ¬ 𝜓)) | |
3 | 1, 2 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → ¬ 𝜓))) |
4 | 3 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → ¬ 𝜓))) |
5 | pm2.01 606 | . 2 ⊢ ((𝜓 → ¬ 𝜓) → ¬ 𝜓) | |
6 | 4, 5 | syl6 33 | 1 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 |
This theorem is referenced by: mt2d 615 con3d 621 pm3.2im 627 con2 633 pm2.65 649 con1biimdc 859 exists2 2103 necon2ad 2384 necon2bd 2385 minel 3455 nlimsucg 4523 poirr2 4975 funun 5211 imadif 5247 infnlbti 6962 mkvprop 7084 addnidpig 7239 zltnle 9196 zdcle 9223 btwnnz 9241 prime 9246 icc0r 9812 fznlem 9925 qltnle 10127 bcval4 10608 seq3coll 10695 fsum3cvg 11257 fsumsplit 11286 fproddccvg 11451 fprodsplitdc 11475 2sqpwodd 12030 logbgcd1irr 13244 |
Copyright terms: Public domain | W3C validator |