ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2d GIF version

Theorem con2d 625
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.)
Hypothesis
Ref Expression
con2d.1 (𝜑 → (𝜓 → ¬ 𝜒))
Assertion
Ref Expression
con2d (𝜑 → (𝜒 → ¬ 𝜓))

Proof of Theorem con2d
StepHypRef Expression
1 con2d.1 . . . 4 (𝜑 → (𝜓 → ¬ 𝜒))
2 ax-in2 616 . . . 4 𝜒 → (𝜒 → ¬ 𝜓))
31, 2syl6 33 . . 3 (𝜑 → (𝜓 → (𝜒 → ¬ 𝜓)))
43com23 78 . 2 (𝜑 → (𝜒 → (𝜓 → ¬ 𝜓)))
5 pm2.01 617 . 2 ((𝜓 → ¬ 𝜓) → ¬ 𝜓)
64, 5syl6 33 1 (𝜑 → (𝜒 → ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 615  ax-in2 616
This theorem is referenced by:  mt2d  626  con3d  632  pm3.2im  638  con2  644  pm2.65  660  con1biimdc  874  exists2  2139  necon2ad  2421  necon2bd  2422  minel  3508  nlimsucg  4598  poirr2  5058  funun  5298  imadif  5334  infnlbti  7085  mkvprop  7217  addnidpig  7396  zltnle  9363  zdcle  9393  btwnnz  9411  prime  9416  icc0r  9992  fznlem  10107  qltnle  10313  bcval4  10823  seq3coll  10913  fsum3cvg  11521  fsumsplit  11550  fproddccvg  11715  fprodsplitdc  11739  2sqpwodd  12314  pockthg  12495  prmunb  12500  logbgcd1irr  15099  lgsne0  15154
  Copyright terms: Public domain W3C validator