| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2d | GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
| Ref | Expression |
|---|---|
| con2d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con2d | ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 2 | ax-in2 618 | . . . 4 ⊢ (¬ 𝜒 → (𝜒 → ¬ 𝜓)) | |
| 3 | 1, 2 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → ¬ 𝜓))) |
| 4 | 3 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → ¬ 𝜓))) |
| 5 | pm2.01 619 | . 2 ⊢ ((𝜓 → ¬ 𝜓) → ¬ 𝜓) | |
| 6 | 4, 5 | syl6 33 | 1 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: mt2d 628 con3d 634 pm3.2im 640 con2 646 pm2.65 663 con1biimdc 877 exists2 2155 necon2ad 2437 necon2bd 2438 minel 3533 nlimsucg 4635 poirr2 5097 funun 5338 imadif 5377 infnlbti 7161 mkvprop 7293 addnidpig 7491 zltnle 9460 zdcle 9491 btwnnz 9509 prime 9514 icc0r 10090 fznlem 10205 qltnle 10430 bcval4 10941 seq3coll 11031 swrd0g 11158 fsum3cvg 11855 fsumsplit 11884 fproddccvg 12049 fprodsplitdc 12073 bitsinv1lem 12438 2sqpwodd 12664 pockthg 12846 prmunb 12851 logbgcd1irr 15606 lgsne0 15682 |
| Copyright terms: Public domain | W3C validator |