ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2d GIF version

Theorem con2d 627
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.)
Hypothesis
Ref Expression
con2d.1 (𝜑 → (𝜓 → ¬ 𝜒))
Assertion
Ref Expression
con2d (𝜑 → (𝜒 → ¬ 𝜓))

Proof of Theorem con2d
StepHypRef Expression
1 con2d.1 . . . 4 (𝜑 → (𝜓 → ¬ 𝜒))
2 ax-in2 618 . . . 4 𝜒 → (𝜒 → ¬ 𝜓))
31, 2syl6 33 . . 3 (𝜑 → (𝜓 → (𝜒 → ¬ 𝜓)))
43com23 78 . 2 (𝜑 → (𝜒 → (𝜓 → ¬ 𝜓)))
5 pm2.01 619 . 2 ((𝜓 → ¬ 𝜓) → ¬ 𝜓)
64, 5syl6 33 1 (𝜑 → (𝜒 → ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 617  ax-in2 618
This theorem is referenced by:  mt2d  628  con3d  634  pm3.2im  640  con2  646  pm2.65  663  con1biimdc  878  exists2  2175  necon2ad  2457  necon2bd  2458  minel  3553  nlimsucg  4658  poirr2  5121  funun  5362  imadif  5401  infnlbti  7201  mkvprop  7333  addnidpig  7531  zltnle  9500  zdcle  9531  btwnnz  9549  prime  9554  icc0r  10130  fznlem  10245  qltnle  10471  bcval4  10982  seq3coll  11072  swrd0g  11200  fsum3cvg  11897  fsumsplit  11926  fproddccvg  12091  fprodsplitdc  12115  bitsinv1lem  12480  2sqpwodd  12706  pockthg  12888  prmunb  12893  logbgcd1irr  15649  lgsne0  15725
  Copyright terms: Public domain W3C validator