| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2d | GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
| Ref | Expression |
|---|---|
| con2d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con2d | ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 2 | ax-in2 616 | . . . 4 ⊢ (¬ 𝜒 → (𝜒 → ¬ 𝜓)) | |
| 3 | 1, 2 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → ¬ 𝜓))) |
| 4 | 3 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → ¬ 𝜓))) |
| 5 | pm2.01 617 | . 2 ⊢ ((𝜓 → ¬ 𝜓) → ¬ 𝜓) | |
| 6 | 4, 5 | syl6 33 | 1 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mt2d 626 con3d 632 pm3.2im 638 con2 644 pm2.65 660 con1biimdc 874 exists2 2142 necon2ad 2424 necon2bd 2425 minel 3513 nlimsucg 4603 poirr2 5063 funun 5303 imadif 5339 infnlbti 7101 mkvprop 7233 addnidpig 7422 zltnle 9391 zdcle 9421 btwnnz 9439 prime 9444 icc0r 10020 fznlem 10135 qltnle 10352 bcval4 10863 seq3coll 10953 fsum3cvg 11562 fsumsplit 11591 fproddccvg 11756 fprodsplitdc 11780 bitsinv1lem 12145 2sqpwodd 12371 pockthg 12553 prmunb 12558 logbgcd1irr 15289 lgsne0 15365 |
| Copyright terms: Public domain | W3C validator |