| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2d | GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
| Ref | Expression |
|---|---|
| con2d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con2d | ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 2 | ax-in2 616 | . . . 4 ⊢ (¬ 𝜒 → (𝜒 → ¬ 𝜓)) | |
| 3 | 1, 2 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → ¬ 𝜓))) |
| 4 | 3 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → ¬ 𝜓))) |
| 5 | pm2.01 617 | . 2 ⊢ ((𝜓 → ¬ 𝜓) → ¬ 𝜓) | |
| 6 | 4, 5 | syl6 33 | 1 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: mt2d 626 con3d 632 pm3.2im 638 con2 644 pm2.65 661 con1biimdc 875 exists2 2152 necon2ad 2434 necon2bd 2435 minel 3523 nlimsucg 4618 poirr2 5080 funun 5320 imadif 5359 infnlbti 7135 mkvprop 7267 addnidpig 7456 zltnle 9425 zdcle 9456 btwnnz 9474 prime 9479 icc0r 10055 fznlem 10170 qltnle 10393 bcval4 10904 seq3coll 10994 swrd0g 11121 fsum3cvg 11733 fsumsplit 11762 fproddccvg 11927 fprodsplitdc 11951 bitsinv1lem 12316 2sqpwodd 12542 pockthg 12724 prmunb 12729 logbgcd1irr 15483 lgsne0 15559 |
| Copyright terms: Public domain | W3C validator |