| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2d | GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.) |
| Ref | Expression |
|---|---|
| con2d.1 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con2d | ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
| 2 | ax-in2 618 | . . . 4 ⊢ (¬ 𝜒 → (𝜒 → ¬ 𝜓)) | |
| 3 | 1, 2 | syl6 33 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → ¬ 𝜓))) |
| 4 | 3 | com23 78 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → ¬ 𝜓))) |
| 5 | pm2.01 619 | . 2 ⊢ ((𝜓 → ¬ 𝜓) → ¬ 𝜓) | |
| 6 | 4, 5 | syl6 33 | 1 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: mt2d 628 con3d 634 pm3.2im 640 con2 646 pm2.65 663 con1biimdc 878 exists2 2175 necon2ad 2457 necon2bd 2458 minel 3553 nlimsucg 4658 poirr2 5121 funun 5362 imadif 5401 infnlbti 7201 mkvprop 7333 addnidpig 7531 zltnle 9500 zdcle 9531 btwnnz 9549 prime 9554 icc0r 10130 fznlem 10245 qltnle 10471 bcval4 10982 seq3coll 11072 swrd0g 11200 fsum3cvg 11897 fsumsplit 11926 fproddccvg 12091 fprodsplitdc 12115 bitsinv1lem 12480 2sqpwodd 12706 pockthg 12888 prmunb 12893 logbgcd1irr 15649 lgsne0 15725 |
| Copyright terms: Public domain | W3C validator |