ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2d GIF version

Theorem con2d 614
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.) (Revised by NM, 12-Feb-2013.)
Hypothesis
Ref Expression
con2d.1 (𝜑 → (𝜓 → ¬ 𝜒))
Assertion
Ref Expression
con2d (𝜑 → (𝜒 → ¬ 𝜓))

Proof of Theorem con2d
StepHypRef Expression
1 con2d.1 . . . 4 (𝜑 → (𝜓 → ¬ 𝜒))
2 ax-in2 605 . . . 4 𝜒 → (𝜒 → ¬ 𝜓))
31, 2syl6 33 . . 3 (𝜑 → (𝜓 → (𝜒 → ¬ 𝜓)))
43com23 78 . 2 (𝜑 → (𝜒 → (𝜓 → ¬ 𝜓)))
5 pm2.01 606 . 2 ((𝜓 → ¬ 𝜓) → ¬ 𝜓)
64, 5syl6 33 1 (𝜑 → (𝜒 → ¬ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 604  ax-in2 605
This theorem is referenced by:  mt2d  615  con3d  621  pm3.2im  627  con2  633  pm2.65  649  con1biimdc  863  exists2  2111  necon2ad  2393  necon2bd  2394  minel  3470  nlimsucg  4543  poirr2  4996  funun  5232  imadif  5268  infnlbti  6991  mkvprop  7122  addnidpig  7277  zltnle  9237  zdcle  9267  btwnnz  9285  prime  9290  icc0r  9862  fznlem  9976  qltnle  10181  bcval4  10665  seq3coll  10755  fsum3cvg  11319  fsumsplit  11348  fproddccvg  11513  fprodsplitdc  11537  2sqpwodd  12108  pockthg  12287  prmunb  12292  logbgcd1irr  13525  lgsne0  13579
  Copyright terms: Public domain W3C validator