| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbi | GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbi.1 | ⊢ ¬ 𝜑 |
| mtbi.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbi | ⊢ ¬ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbi.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | mtbi.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | biimpri 133 | . 2 ⊢ (𝜓 → 𝜑) |
| 4 | 1, 3 | mto 666 | 1 ⊢ ¬ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mtbir 675 vnex 4214 onsucelsucexmid 4619 dtruex 4648 dmsn0 5192 php5 7007 exmidonfinlem 7359 ndvdsi 12430 nprmi 12632 dec2dvds 12920 dec5dvds2 12922 unennn 12954 bj-vprc 16189 bj-vnex 16191 trirec0xor 16344 |
| Copyright terms: Public domain | W3C validator |