ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbi GIF version

Theorem mtbi 674
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.)
Hypotheses
Ref Expression
mtbi.1 ¬ 𝜑
mtbi.2 (𝜑𝜓)
Assertion
Ref Expression
mtbi ¬ 𝜓

Proof of Theorem mtbi
StepHypRef Expression
1 mtbi.1 . 2 ¬ 𝜑
2 mtbi.2 . . 3 (𝜑𝜓)
32biimpri 133 . 2 (𝜓𝜑)
41, 3mto 666 1 ¬ 𝜓
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mtbir  675  vnex  4214  onsucelsucexmid  4619  dtruex  4648  dmsn0  5192  php5  7007  exmidonfinlem  7359  ndvdsi  12430  nprmi  12632  dec2dvds  12920  dec5dvds2  12922  unennn  12954  bj-vprc  16189  bj-vnex  16191  trirec0xor  16344
  Copyright terms: Public domain W3C validator