ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbi GIF version

Theorem mtbi 665
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.)
Hypotheses
Ref Expression
mtbi.1 ¬ 𝜑
mtbi.2 (𝜑𝜓)
Assertion
Ref Expression
mtbi ¬ 𝜓

Proof of Theorem mtbi
StepHypRef Expression
1 mtbi.1 . 2 ¬ 𝜑
2 mtbi.2 . . 3 (𝜑𝜓)
32biimpri 132 . 2 (𝜓𝜑)
41, 3mto 657 1 ¬ 𝜓
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  mtbir  666  vnex  4120  onsucelsucexmid  4514  dtruex  4543  dmsn0  5078  php5  6836  exmidonfinlem  7170  ndvdsi  11892  nprmi  12078  unennn  12352  bj-vprc  13931  bj-vnex  13933  trirec0xor  14077
  Copyright terms: Public domain W3C validator