ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbi GIF version

Theorem mtbi 670
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.)
Hypotheses
Ref Expression
mtbi.1 ¬ 𝜑
mtbi.2 (𝜑𝜓)
Assertion
Ref Expression
mtbi ¬ 𝜓

Proof of Theorem mtbi
StepHypRef Expression
1 mtbi.1 . 2 ¬ 𝜑
2 mtbi.2 . . 3 (𝜑𝜓)
32biimpri 133 . 2 (𝜓𝜑)
41, 3mto 662 1 ¬ 𝜓
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mtbir  671  vnex  4136  onsucelsucexmid  4531  dtruex  4560  dmsn0  5098  php5  6860  exmidonfinlem  7194  ndvdsi  11940  nprmi  12126  unennn  12400  bj-vprc  14733  bj-vnex  14735  trirec0xor  14878
  Copyright terms: Public domain W3C validator