ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsn GIF version

Theorem disjsn 3643
Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
disjsn ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)

Proof of Theorem disjsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 disj1 3464 . 2 ((𝐴 ∩ {𝐵}) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥 ∈ {𝐵}))
2 con2b 664 . . . 4 ((𝑥𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} → ¬ 𝑥𝐴))
3 velsn 3598 . . . . 5 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
43imbi1i 237 . . . 4 ((𝑥 ∈ {𝐵} → ¬ 𝑥𝐴) ↔ (𝑥 = 𝐵 → ¬ 𝑥𝐴))
5 imnan 685 . . . 4 ((𝑥 = 𝐵 → ¬ 𝑥𝐴) ↔ ¬ (𝑥 = 𝐵𝑥𝐴))
62, 4, 53bitri 205 . . 3 ((𝑥𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ¬ (𝑥 = 𝐵𝑥𝐴))
76albii 1463 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ∀𝑥 ¬ (𝑥 = 𝐵𝑥𝐴))
8 alnex 1492 . . 3 (∀𝑥 ¬ (𝑥 = 𝐵𝑥𝐴) ↔ ¬ ∃𝑥(𝑥 = 𝐵𝑥𝐴))
9 df-clel 2166 . . 3 (𝐵𝐴 ↔ ∃𝑥(𝑥 = 𝐵𝑥𝐴))
108, 9xchbinxr 678 . 2 (∀𝑥 ¬ (𝑥 = 𝐵𝑥𝐴) ↔ ¬ 𝐵𝐴)
111, 7, 103bitri 205 1 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  wex 1485  wcel 2141  cin 3120  c0 3414  {csn 3581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-dif 3123  df-in 3127  df-nul 3415  df-sn 3587
This theorem is referenced by:  disjsn2  3644  ssdifsn  3709  orddisj  4528  ndmima  4986  funtpg  5247  fnunsn  5303  ressnop0  5674  ftpg  5677  fsnunf  5693  fsnunfv  5694  enpr2d  6791  phpm  6839  fiunsnnn  6855  ac6sfi  6872  unsnfi  6892  tpfidisj  6901  iunfidisj  6919  pm54.43  7154  dju1en  7177  fzpreddisj  10014  fzp1disj  10023  frecfzennn  10369  hashunsng  10729  hashxp  10748  fsumsplitsn  11360  sumtp  11364  fsumsplitsnun  11369  fsum2dlemstep  11384  fsumconst  11404  fsumabs  11415  fsumiun  11427  fprodm1  11548  fprodunsn  11554  fprod2dlemstep  11572  fprodsplitsn  11583  ennnfonelemhf1o  12355  structcnvcnv  12419  fsumcncntop  13271
  Copyright terms: Public domain W3C validator