| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjsn | GIF version | ||
| Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
| Ref | Expression |
|---|---|
| disjsn | ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj1 3502 | . 2 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵})) | |
| 2 | con2b 670 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} → ¬ 𝑥 ∈ 𝐴)) | |
| 3 | velsn 3640 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
| 4 | 3 | imbi1i 238 | . . . 4 ⊢ ((𝑥 ∈ {𝐵} → ¬ 𝑥 ∈ 𝐴) ↔ (𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
| 5 | imnan 691 | . . . 4 ⊢ ((𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴) ↔ ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 6 | 2, 4, 5 | 3bitri 206 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) |
| 7 | 6 | albii 1484 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ∀𝑥 ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) |
| 8 | alnex 1513 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ ¬ ∃𝑥(𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 9 | df-clel 2192 | . . 3 ⊢ (𝐵 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 10 | 8, 9 | xchbinxr 684 | . 2 ⊢ (∀𝑥 ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ ¬ 𝐵 ∈ 𝐴) |
| 11 | 1, 7, 10 | 3bitri 206 | 1 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∩ cin 3156 ∅c0 3451 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-in 3163 df-nul 3452 df-sn 3629 |
| This theorem is referenced by: disjsn2 3686 ssdifsn 3751 orddisj 4583 ndmima 5047 funtpg 5310 fnunsn 5368 ressnop0 5746 ftpg 5749 fsnunf 5765 fsnunfv 5766 enpr2d 6885 phpm 6935 fiunsnnn 6951 ac6sfi 6968 unsnfi 6989 tpfidisj 6999 iunfidisj 7021 pm54.43 7271 dju1en 7298 fzpreddisj 10165 fzp1disj 10174 frecfzennn 10537 hashunsng 10918 hashxp 10937 fsumsplitsn 11594 sumtp 11598 fsumsplitsnun 11603 fsum2dlemstep 11618 fsumconst 11638 fsumabs 11649 fsumiun 11661 fprodm1 11782 fprodunsn 11788 fprod2dlemstep 11806 fprodsplitsn 11817 bitsinv1 12146 ennnfonelemhf1o 12657 structcnvcnv 12721 fsumcncntop 14911 dvmptfsum 15069 perfectlem2 15344 |
| Copyright terms: Public domain | W3C validator |