ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsn GIF version

Theorem disjsn 3700
Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
disjsn ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)

Proof of Theorem disjsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 disj1 3515 . 2 ((𝐴 ∩ {𝐵}) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥 ∈ {𝐵}))
2 con2b 671 . . . 4 ((𝑥𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} → ¬ 𝑥𝐴))
3 velsn 3655 . . . . 5 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
43imbi1i 238 . . . 4 ((𝑥 ∈ {𝐵} → ¬ 𝑥𝐴) ↔ (𝑥 = 𝐵 → ¬ 𝑥𝐴))
5 imnan 692 . . . 4 ((𝑥 = 𝐵 → ¬ 𝑥𝐴) ↔ ¬ (𝑥 = 𝐵𝑥𝐴))
62, 4, 53bitri 206 . . 3 ((𝑥𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ¬ (𝑥 = 𝐵𝑥𝐴))
76albii 1494 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ∀𝑥 ¬ (𝑥 = 𝐵𝑥𝐴))
8 alnex 1523 . . 3 (∀𝑥 ¬ (𝑥 = 𝐵𝑥𝐴) ↔ ¬ ∃𝑥(𝑥 = 𝐵𝑥𝐴))
9 df-clel 2202 . . 3 (𝐵𝐴 ↔ ∃𝑥(𝑥 = 𝐵𝑥𝐴))
108, 9xchbinxr 685 . 2 (∀𝑥 ¬ (𝑥 = 𝐵𝑥𝐴) ↔ ¬ 𝐵𝐴)
111, 7, 103bitri 206 1 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wex 1516  wcel 2177  cin 3169  c0 3464  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-dif 3172  df-in 3176  df-nul 3465  df-sn 3644
This theorem is referenced by:  disjsn2  3701  ssdifsn  3767  opwo0id  4301  orddisj  4602  ndmima  5068  funtpg  5334  fnunsn  5392  ressnop0  5778  ftpg  5781  fsnunf  5797  fsnunfv  5798  enpr2d  6925  phpm  6977  fiunsnnn  6993  ac6sfi  7010  unsnfi  7031  tpfidisj  7041  iunfidisj  7063  pm54.43  7313  dju1en  7341  fzpreddisj  10213  fzp1disj  10222  frecfzennn  10593  hashunsng  10974  hashxp  10993  fsumsplitsn  11796  sumtp  11800  fsumsplitsnun  11805  fsum2dlemstep  11820  fsumconst  11840  fsumabs  11851  fsumiun  11863  fprodm1  11984  fprodunsn  11990  fprod2dlemstep  12008  fprodsplitsn  12019  bitsinv1  12348  ennnfonelemhf1o  12859  structcnvcnv  12923  fsumcncntop  15114  dvmptfsum  15272  perfectlem2  15547
  Copyright terms: Public domain W3C validator