| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjsn | GIF version | ||
| Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
| Ref | Expression |
|---|---|
| disjsn | ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj1 3502 | . 2 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵})) | |
| 2 | con2b 670 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} → ¬ 𝑥 ∈ 𝐴)) | |
| 3 | velsn 3640 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
| 4 | 3 | imbi1i 238 | . . . 4 ⊢ ((𝑥 ∈ {𝐵} → ¬ 𝑥 ∈ 𝐴) ↔ (𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
| 5 | imnan 691 | . . . 4 ⊢ ((𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴) ↔ ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 6 | 2, 4, 5 | 3bitri 206 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) |
| 7 | 6 | albii 1484 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ∀𝑥 ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) |
| 8 | alnex 1513 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ ¬ ∃𝑥(𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 9 | df-clel 2192 | . . 3 ⊢ (𝐵 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 10 | 8, 9 | xchbinxr 684 | . 2 ⊢ (∀𝑥 ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ ¬ 𝐵 ∈ 𝐴) |
| 11 | 1, 7, 10 | 3bitri 206 | 1 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∩ cin 3156 ∅c0 3451 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-in 3163 df-nul 3452 df-sn 3629 |
| This theorem is referenced by: disjsn2 3686 ssdifsn 3751 orddisj 4583 ndmima 5047 funtpg 5310 fnunsn 5368 ressnop0 5746 ftpg 5749 fsnunf 5765 fsnunfv 5766 enpr2d 6885 phpm 6935 fiunsnnn 6951 ac6sfi 6968 unsnfi 6989 tpfidisj 6999 iunfidisj 7021 pm54.43 7269 dju1en 7296 fzpreddisj 10163 fzp1disj 10172 frecfzennn 10535 hashunsng 10916 hashxp 10935 fsumsplitsn 11592 sumtp 11596 fsumsplitsnun 11601 fsum2dlemstep 11616 fsumconst 11636 fsumabs 11647 fsumiun 11659 fprodm1 11780 fprodunsn 11786 fprod2dlemstep 11804 fprodsplitsn 11815 bitsinv1 12144 ennnfonelemhf1o 12655 structcnvcnv 12719 fsumcncntop 14887 dvmptfsum 15045 perfectlem2 15320 |
| Copyright terms: Public domain | W3C validator |