| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjsn | GIF version | ||
| Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
| Ref | Expression |
|---|---|
| disjsn | ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj1 3542 | . 2 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵})) | |
| 2 | con2b 673 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} → ¬ 𝑥 ∈ 𝐴)) | |
| 3 | velsn 3683 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
| 4 | 3 | imbi1i 238 | . . . 4 ⊢ ((𝑥 ∈ {𝐵} → ¬ 𝑥 ∈ 𝐴) ↔ (𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
| 5 | imnan 694 | . . . 4 ⊢ ((𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴) ↔ ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 6 | 2, 4, 5 | 3bitri 206 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) |
| 7 | 6 | albii 1516 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ∀𝑥 ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) |
| 8 | alnex 1545 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ ¬ ∃𝑥(𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 9 | df-clel 2225 | . . 3 ⊢ (𝐵 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 10 | 8, 9 | xchbinxr 687 | . 2 ⊢ (∀𝑥 ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ ¬ 𝐵 ∈ 𝐴) |
| 11 | 1, 7, 10 | 3bitri 206 | 1 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∩ cin 3196 ∅c0 3491 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dif 3199 df-in 3203 df-nul 3492 df-sn 3672 |
| This theorem is referenced by: disjsn2 3729 ssdifsn 3795 opwo0id 4334 orddisj 4637 ndmima 5104 funtpg 5371 fnunsn 5429 ressnop0 5819 ftpg 5822 fsnunf 5838 fsnunfv 5839 enpr2d 6970 phpm 7023 fiunsnnn 7039 ac6sfi 7056 unsnfi 7077 tpfidisj 7087 iunfidisj 7109 pm54.43 7359 dju1en 7391 fzpreddisj 10263 fzp1disj 10272 frecfzennn 10643 hashunsng 11024 hashxp 11043 fsumsplitsn 11916 sumtp 11920 fsumsplitsnun 11925 fsum2dlemstep 11940 fsumconst 11960 fsumabs 11971 fsumiun 11983 fprodm1 12104 fprodunsn 12110 fprod2dlemstep 12128 fprodsplitsn 12139 bitsinv1 12468 ennnfonelemhf1o 12979 structcnvcnv 13043 fsumcncntop 15235 dvmptfsum 15393 perfectlem2 15668 |
| Copyright terms: Public domain | W3C validator |