ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsn GIF version

Theorem disjsn 3655
Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
disjsn ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)

Proof of Theorem disjsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 disj1 3474 . 2 ((𝐴 ∩ {𝐵}) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥 ∈ {𝐵}))
2 con2b 669 . . . 4 ((𝑥𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} → ¬ 𝑥𝐴))
3 velsn 3610 . . . . 5 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
43imbi1i 238 . . . 4 ((𝑥 ∈ {𝐵} → ¬ 𝑥𝐴) ↔ (𝑥 = 𝐵 → ¬ 𝑥𝐴))
5 imnan 690 . . . 4 ((𝑥 = 𝐵 → ¬ 𝑥𝐴) ↔ ¬ (𝑥 = 𝐵𝑥𝐴))
62, 4, 53bitri 206 . . 3 ((𝑥𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ¬ (𝑥 = 𝐵𝑥𝐴))
76albii 1470 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ∀𝑥 ¬ (𝑥 = 𝐵𝑥𝐴))
8 alnex 1499 . . 3 (∀𝑥 ¬ (𝑥 = 𝐵𝑥𝐴) ↔ ¬ ∃𝑥(𝑥 = 𝐵𝑥𝐴))
9 df-clel 2173 . . 3 (𝐵𝐴 ↔ ∃𝑥(𝑥 = 𝐵𝑥𝐴))
108, 9xchbinxr 683 . 2 (∀𝑥 ¬ (𝑥 = 𝐵𝑥𝐴) ↔ ¬ 𝐵𝐴)
111, 7, 103bitri 206 1 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wex 1492  wcel 2148  cin 3129  c0 3423  {csn 3593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2740  df-dif 3132  df-in 3136  df-nul 3424  df-sn 3599
This theorem is referenced by:  disjsn2  3656  ssdifsn  3721  orddisj  4546  ndmima  5006  funtpg  5268  fnunsn  5324  ressnop0  5698  ftpg  5701  fsnunf  5717  fsnunfv  5718  enpr2d  6817  phpm  6865  fiunsnnn  6881  ac6sfi  6898  unsnfi  6918  tpfidisj  6927  iunfidisj  6945  pm54.43  7189  dju1en  7212  fzpreddisj  10071  fzp1disj  10080  frecfzennn  10426  hashunsng  10787  hashxp  10806  fsumsplitsn  11418  sumtp  11422  fsumsplitsnun  11427  fsum2dlemstep  11442  fsumconst  11462  fsumabs  11473  fsumiun  11485  fprodm1  11606  fprodunsn  11612  fprod2dlemstep  11630  fprodsplitsn  11641  ennnfonelemhf1o  12414  structcnvcnv  12478  fsumcncntop  14059
  Copyright terms: Public domain W3C validator