Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjsn | GIF version |
Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
Ref | Expression |
---|---|
disjsn | ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj1 3459 | . 2 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵})) | |
2 | con2b 659 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} → ¬ 𝑥 ∈ 𝐴)) | |
3 | velsn 3593 | . . . . 5 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
4 | 3 | imbi1i 237 | . . . 4 ⊢ ((𝑥 ∈ {𝐵} → ¬ 𝑥 ∈ 𝐴) ↔ (𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
5 | imnan 680 | . . . 4 ⊢ ((𝑥 = 𝐵 → ¬ 𝑥 ∈ 𝐴) ↔ ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
6 | 2, 4, 5 | 3bitri 205 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) |
7 | 6 | albii 1458 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ {𝐵}) ↔ ∀𝑥 ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) |
8 | alnex 1487 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ ¬ ∃𝑥(𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
9 | df-clel 2161 | . . 3 ⊢ (𝐵 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
10 | 8, 9 | xchbinxr 673 | . 2 ⊢ (∀𝑥 ¬ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐴) ↔ ¬ 𝐵 ∈ 𝐴) |
11 | 1, 7, 10 | 3bitri 205 | 1 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∩ cin 3115 ∅c0 3409 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dif 3118 df-in 3122 df-nul 3410 df-sn 3582 |
This theorem is referenced by: disjsn2 3639 ssdifsn 3704 orddisj 4523 ndmima 4981 funtpg 5239 fnunsn 5295 ressnop0 5666 ftpg 5669 fsnunf 5685 fsnunfv 5686 enpr2d 6783 phpm 6831 fiunsnnn 6847 ac6sfi 6864 unsnfi 6884 tpfidisj 6893 iunfidisj 6911 pm54.43 7146 dju1en 7169 fzpreddisj 10006 fzp1disj 10015 frecfzennn 10361 hashunsng 10720 hashxp 10739 fsumsplitsn 11351 sumtp 11355 fsumsplitsnun 11360 fsum2dlemstep 11375 fsumconst 11395 fsumabs 11406 fsumiun 11418 fprodm1 11539 fprodunsn 11545 fprod2dlemstep 11563 fprodsplitsn 11574 ennnfonelemhf1o 12346 structcnvcnv 12410 fsumcncntop 13196 |
Copyright terms: Public domain | W3C validator |