ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdif3 GIF version

Theorem dfdif3 3232
Description: Alternate definition of class difference. Definition of relative set complement in Section 2.3 of [Pierik], p. 10. (Contributed by BJ and Jim Kingdon, 16-Jun-2022.)
Assertion
Ref Expression
dfdif3 (𝐴𝐵) = {𝑥𝐴 ∣ ∀𝑦𝐵 𝑥𝑦}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dfdif3
StepHypRef Expression
1 dfdif2 3124 . 2 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
2 a9ev 1685 . . . . . . 7 𝑦 𝑦 = 𝑥
32biantrur 301 . . . . . 6 𝑥𝐵 ↔ (∃𝑦 𝑦 = 𝑥 ∧ ¬ 𝑥𝐵))
4 19.41v 1890 . . . . . 6 (∃𝑦(𝑦 = 𝑥 ∧ ¬ 𝑥𝐵) ↔ (∃𝑦 𝑦 = 𝑥 ∧ ¬ 𝑥𝐵))
53, 4bitr4i 186 . . . . 5 𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝑥 ∧ ¬ 𝑥𝐵))
6 sb56 1873 . . . . 5 (∃𝑦(𝑦 = 𝑥 ∧ ¬ 𝑥𝐵) ↔ ∀𝑦(𝑦 = 𝑥 → ¬ 𝑥𝐵))
7 equcom 1694 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
87imbi1i 237 . . . . . . 7 ((𝑦 = 𝑥 → ¬ 𝑥𝐵) ↔ (𝑥 = 𝑦 → ¬ 𝑥𝐵))
9 eleq1w 2227 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
109notbid 657 . . . . . . . . 9 (𝑥 = 𝑦 → (¬ 𝑥𝐵 ↔ ¬ 𝑦𝐵))
1110pm5.74i 179 . . . . . . . 8 ((𝑥 = 𝑦 → ¬ 𝑥𝐵) ↔ (𝑥 = 𝑦 → ¬ 𝑦𝐵))
12 con2b 659 . . . . . . . 8 ((𝑥 = 𝑦 → ¬ 𝑦𝐵) ↔ (𝑦𝐵 → ¬ 𝑥 = 𝑦))
13 df-ne 2337 . . . . . . . . . 10 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
1413bicomi 131 . . . . . . . . 9 𝑥 = 𝑦𝑥𝑦)
1514imbi2i 225 . . . . . . . 8 ((𝑦𝐵 → ¬ 𝑥 = 𝑦) ↔ (𝑦𝐵𝑥𝑦))
1611, 12, 153bitri 205 . . . . . . 7 ((𝑥 = 𝑦 → ¬ 𝑥𝐵) ↔ (𝑦𝐵𝑥𝑦))
178, 16bitri 183 . . . . . 6 ((𝑦 = 𝑥 → ¬ 𝑥𝐵) ↔ (𝑦𝐵𝑥𝑦))
1817albii 1458 . . . . 5 (∀𝑦(𝑦 = 𝑥 → ¬ 𝑥𝐵) ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
195, 6, 183bitri 205 . . . 4 𝑥𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
20 df-ral 2449 . . . 4 (∀𝑦𝐵 𝑥𝑦 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
2119, 20bitr4i 186 . . 3 𝑥𝐵 ↔ ∀𝑦𝐵 𝑥𝑦)
2221rabbii 2712 . 2 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = {𝑥𝐴 ∣ ∀𝑦𝐵 𝑥𝑦}
231, 22eqtri 2186 1 (𝐴𝐵) = {𝑥𝐴 ∣ ∀𝑦𝐵 𝑥𝑦}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1341   = wceq 1343  wex 1480  wcel 2136  wne 2336  wral 2444  {crab 2448  cdif 3113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ne 2337  df-ral 2449  df-rab 2453  df-dif 3118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator