Proof of Theorem dfdif3
| Step | Hyp | Ref
| Expression |
| 1 | | dfdif2 3165 |
. 2
⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
| 2 | | a9ev 1711 |
. . . . . . 7
⊢
∃𝑦 𝑦 = 𝑥 |
| 3 | 2 | biantrur 303 |
. . . . . 6
⊢ (¬
𝑥 ∈ 𝐵 ↔ (∃𝑦 𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 4 | | 19.41v 1917 |
. . . . . 6
⊢
(∃𝑦(𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝐵) ↔ (∃𝑦 𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 5 | 3, 4 | bitr4i 187 |
. . . . 5
⊢ (¬
𝑥 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 6 | | sb56 1900 |
. . . . 5
⊢
(∃𝑦(𝑦 = 𝑥 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑦(𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐵)) |
| 7 | | equcom 1720 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) |
| 8 | 7 | imbi1i 238 |
. . . . . . 7
⊢ ((𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝐵)) |
| 9 | | eleq1w 2257 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
| 10 | 9 | notbid 668 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑦 ∈ 𝐵)) |
| 11 | 10 | pm5.74i 180 |
. . . . . . . 8
⊢ ((𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 = 𝑦 → ¬ 𝑦 ∈ 𝐵)) |
| 12 | | con2b 670 |
. . . . . . . 8
⊢ ((𝑥 = 𝑦 → ¬ 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝐵 → ¬ 𝑥 = 𝑦)) |
| 13 | | df-ne 2368 |
. . . . . . . . . 10
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) |
| 14 | 13 | bicomi 132 |
. . . . . . . . 9
⊢ (¬
𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦) |
| 15 | 14 | imbi2i 226 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 → ¬ 𝑥 = 𝑦) ↔ (𝑦 ∈ 𝐵 → 𝑥 ≠ 𝑦)) |
| 16 | 11, 12, 15 | 3bitri 206 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐵 → 𝑥 ≠ 𝑦)) |
| 17 | 8, 16 | bitri 184 |
. . . . . 6
⊢ ((𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐵 → 𝑥 ≠ 𝑦)) |
| 18 | 17 | albii 1484 |
. . . . 5
⊢
(∀𝑦(𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ≠ 𝑦)) |
| 19 | 5, 6, 18 | 3bitri 206 |
. . . 4
⊢ (¬
𝑥 ∈ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ≠ 𝑦)) |
| 20 | | df-ral 2480 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 𝑥 ≠ 𝑦 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ≠ 𝑦)) |
| 21 | 19, 20 | bitr4i 187 |
. . 3
⊢ (¬
𝑥 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐵 𝑥 ≠ 𝑦) |
| 22 | 21 | rabbii 2749 |
. 2
⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 𝑥 ≠ 𝑦} |
| 23 | 1, 22 | eqtri 2217 |
1
⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 𝑥 ≠ 𝑦} |