ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdif3 GIF version

Theorem dfdif3 3108
Description: Alternate definition of class difference. Definition of relative set complement in Section 2.3 of [Pierik], p. 10. (Contributed by BJ and Jim Kingdon, 16-Jun-2022.)
Assertion
Ref Expression
dfdif3 (𝐴𝐵) = {𝑥𝐴 ∣ ∀𝑦𝐵 𝑥𝑦}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dfdif3
StepHypRef Expression
1 dfdif2 3005 . 2 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
2 a9ev 1632 . . . . . . 7 𝑦 𝑦 = 𝑥
32biantrur 297 . . . . . 6 𝑥𝐵 ↔ (∃𝑦 𝑦 = 𝑥 ∧ ¬ 𝑥𝐵))
4 19.41v 1830 . . . . . 6 (∃𝑦(𝑦 = 𝑥 ∧ ¬ 𝑥𝐵) ↔ (∃𝑦 𝑦 = 𝑥 ∧ ¬ 𝑥𝐵))
53, 4bitr4i 185 . . . . 5 𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝑥 ∧ ¬ 𝑥𝐵))
6 sb56 1813 . . . . 5 (∃𝑦(𝑦 = 𝑥 ∧ ¬ 𝑥𝐵) ↔ ∀𝑦(𝑦 = 𝑥 → ¬ 𝑥𝐵))
7 equcom 1639 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
87imbi1i 236 . . . . . . 7 ((𝑦 = 𝑥 → ¬ 𝑥𝐵) ↔ (𝑥 = 𝑦 → ¬ 𝑥𝐵))
9 eleq1w 2148 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
109notbid 627 . . . . . . . . 9 (𝑥 = 𝑦 → (¬ 𝑥𝐵 ↔ ¬ 𝑦𝐵))
1110pm5.74i 178 . . . . . . . 8 ((𝑥 = 𝑦 → ¬ 𝑥𝐵) ↔ (𝑥 = 𝑦 → ¬ 𝑦𝐵))
12 con2b 628 . . . . . . . 8 ((𝑥 = 𝑦 → ¬ 𝑦𝐵) ↔ (𝑦𝐵 → ¬ 𝑥 = 𝑦))
13 df-ne 2256 . . . . . . . . . 10 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
1413bicomi 130 . . . . . . . . 9 𝑥 = 𝑦𝑥𝑦)
1514imbi2i 224 . . . . . . . 8 ((𝑦𝐵 → ¬ 𝑥 = 𝑦) ↔ (𝑦𝐵𝑥𝑦))
1611, 12, 153bitri 204 . . . . . . 7 ((𝑥 = 𝑦 → ¬ 𝑥𝐵) ↔ (𝑦𝐵𝑥𝑦))
178, 16bitri 182 . . . . . 6 ((𝑦 = 𝑥 → ¬ 𝑥𝐵) ↔ (𝑦𝐵𝑥𝑦))
1817albii 1404 . . . . 5 (∀𝑦(𝑦 = 𝑥 → ¬ 𝑥𝐵) ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
195, 6, 183bitri 204 . . . 4 𝑥𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
20 df-ral 2364 . . . 4 (∀𝑦𝐵 𝑥𝑦 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
2119, 20bitr4i 185 . . 3 𝑥𝐵 ↔ ∀𝑦𝐵 𝑥𝑦)
2221rabbii 2605 . 2 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = {𝑥𝐴 ∣ ∀𝑦𝐵 𝑥𝑦}
231, 22eqtri 2108 1 (𝐴𝐵) = {𝑥𝐴 ∣ ∀𝑦𝐵 𝑥𝑦}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wal 1287   = wceq 1289  wex 1426  wcel 1438  wne 2255  wral 2359  {crab 2363  cdif 2994
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-ne 2256  df-ral 2364  df-rab 2368  df-dif 2999
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator