Proof of Theorem isprm3
| Step | Hyp | Ref
| Expression |
| 1 | | isprm2 12310 |
. 2
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
| 2 | | dvdszrcl 11974 |
. . . . . . . . . . 11
⊢ (𝑧 ∥ 𝑃 → (𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ)) |
| 3 | 2 | simpld 112 |
. . . . . . . . . 10
⊢ (𝑧 ∥ 𝑃 → 𝑧 ∈ ℤ) |
| 4 | | 1zzd 9370 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → 1 ∈ ℤ) |
| 5 | | zdceq 9418 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℤ ∧ 1 ∈
ℤ) → DECID 𝑧 = 1) |
| 6 | 3, 4, 5 | syl2an2 594 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → DECID 𝑧 = 1) |
| 7 | 2 | simprd 114 |
. . . . . . . . . . 11
⊢ (𝑧 ∥ 𝑃 → 𝑃 ∈ ℤ) |
| 8 | 7 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → 𝑃 ∈ ℤ) |
| 9 | | zdceq 9418 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
DECID 𝑧 =
𝑃) |
| 10 | 3, 8, 9 | syl2an2 594 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → DECID 𝑧 = 𝑃) |
| 11 | | dcor 937 |
. . . . . . . . 9
⊢
(DECID 𝑧 = 1 → (DECID 𝑧 = 𝑃 → DECID (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
| 12 | 6, 10, 11 | sylc 62 |
. . . . . . . 8
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → DECID (𝑧 = 1 ∨ 𝑧 = 𝑃)) |
| 13 | | imandc 890 |
. . . . . . . 8
⊢
(DECID (𝑧 = 1 ∨ 𝑧 = 𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
| 15 | | eluz2nn 9657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℕ) |
| 16 | | nnz 9362 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℤ) |
| 17 | | dvdsle 12026 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑧 ∥ 𝑃 → 𝑧 ≤ 𝑃)) |
| 18 | 16, 17 | sylan 283 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧 ∥ 𝑃 → 𝑧 ≤ 𝑃)) |
| 19 | | nnge1 9030 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℕ → 1 ≤
𝑧) |
| 20 | 19 | adantr 276 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → 1 ≤
𝑧) |
| 21 | 18, 20 | jctild 316 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧 ∥ 𝑃 → (1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃))) |
| 22 | 15, 21 | sylan2 286 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) → (𝑧 ∥ 𝑃 → (1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃))) |
| 23 | | nnz 9362 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℤ) |
| 24 | | zre 9347 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℝ) |
| 25 | | 1re 8042 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℝ |
| 26 | | leltap 8669 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((1
∈ ℝ ∧ 𝑧
∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧 ↔ 𝑧 # 1)) |
| 27 | 25, 26 | mp3an1 1335 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ ℝ ∧ 1 ≤
𝑧) → (1 < 𝑧 ↔ 𝑧 # 1)) |
| 28 | 24, 27 | sylan 283 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℤ ∧ 1 ≤
𝑧) → (1 < 𝑧 ↔ 𝑧 # 1)) |
| 29 | | 1z 9369 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℤ |
| 30 | | zapne 9417 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑧 ∈ ℤ ∧ 1 ∈
ℤ) → (𝑧 # 1
↔ 𝑧 ≠
1)) |
| 31 | 29, 30 | mpan2 425 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ ℤ → (𝑧 # 1 ↔ 𝑧 ≠ 1)) |
| 32 | 31 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℤ ∧ 1 ≤
𝑧) → (𝑧 # 1 ↔ 𝑧 ≠ 1)) |
| 33 | 28, 32 | bitrd 188 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ ℤ ∧ 1 ≤
𝑧) → (1 < 𝑧 ↔ 𝑧 ≠ 1)) |
| 34 | 33 | 3adant2 1018 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 1 ≤
𝑧) → (1 < 𝑧 ↔ 𝑧 ≠ 1)) |
| 35 | 34 | 3expia 1207 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 ≤
𝑧 → (1 < 𝑧 ↔ 𝑧 ≠ 1))) |
| 36 | | zre 9347 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃 ∈ ℤ → 𝑃 ∈
ℝ) |
| 37 | | leltap 8669 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 𝑧 ≤ 𝑃) → (𝑧 < 𝑃 ↔ 𝑃 # 𝑧)) |
| 38 | 24, 37 | syl3an1 1282 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℝ ∧ 𝑧 ≤ 𝑃) → (𝑧 < 𝑃 ↔ 𝑃 # 𝑧)) |
| 39 | 36, 38 | syl3an2 1283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑧 ≤ 𝑃) → (𝑧 < 𝑃 ↔ 𝑃 # 𝑧)) |
| 40 | | zapne 9417 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑃 # 𝑧 ↔ 𝑃 ≠ 𝑧)) |
| 41 | 40 | ancoms 268 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑃 # 𝑧 ↔ 𝑃 ≠ 𝑧)) |
| 42 | 41 | 3adant3 1019 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑧 ≤ 𝑃) → (𝑃 # 𝑧 ↔ 𝑃 ≠ 𝑧)) |
| 43 | 39, 42 | bitrd 188 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑧 ≤ 𝑃) → (𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧)) |
| 44 | 43 | 3expia 1207 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 ≤ 𝑃 → (𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧))) |
| 45 | 35, 44 | anim12d 335 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 ≤
𝑧 ∧ 𝑧 ≤ 𝑃) → ((1 < 𝑧 ↔ 𝑧 ≠ 1) ∧ (𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧)))) |
| 46 | 23, 45 | sylan2 286 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤
𝑧 ∧ 𝑧 ≤ 𝑃) → ((1 < 𝑧 ↔ 𝑧 ≠ 1) ∧ (𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧)))) |
| 47 | | pm4.38 605 |
. . . . . . . . . . . . . . . . . 18
⊢ (((1 <
𝑧 ↔ 𝑧 ≠ 1) ∧ (𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧)) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ (𝑧 ≠ 1 ∧ 𝑃 ≠ 𝑧))) |
| 48 | | df-ne 2368 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ≠ 1 ↔ ¬ 𝑧 = 1) |
| 49 | | nesym 2412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃 ≠ 𝑧 ↔ ¬ 𝑧 = 𝑃) |
| 50 | 48, 49 | anbi12i 460 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ≠ 1 ∧ 𝑃 ≠ 𝑧) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃)) |
| 51 | | ioran 753 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
(𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃)) |
| 52 | 50, 51 | bitr4i 187 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ≠ 1 ∧ 𝑃 ≠ 𝑧) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) |
| 53 | 47, 52 | bitrdi 196 |
. . . . . . . . . . . . . . . . 17
⊢ (((1 <
𝑧 ↔ 𝑧 ≠ 1) ∧ (𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧)) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
| 54 | 46, 53 | syl6 33 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤
𝑧 ∧ 𝑧 ≤ 𝑃) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
| 55 | 16, 15, 54 | syl2an 289 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) → ((1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
| 56 | 22, 55 | syld 45 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) → (𝑧 ∥ 𝑃 → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
| 57 | 56 | imp 124 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) ∧ 𝑧 ∥ 𝑃) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
| 58 | | eluzelz 9627 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℤ) |
| 59 | | zltp1le 9397 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1
∈ ℤ ∧ 𝑧
∈ ℤ) → (1 < 𝑧 ↔ (1 + 1) ≤ 𝑧)) |
| 60 | 29, 59 | mpan 424 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℤ → (1 <
𝑧 ↔ (1 + 1) ≤ 𝑧)) |
| 61 | | df-2 9066 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 = (1 +
1) |
| 62 | 61 | breq1i 4041 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 ≤
𝑧 ↔ (1 + 1) ≤ 𝑧) |
| 63 | 60, 62 | bitr4di 198 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℤ → (1 <
𝑧 ↔ 2 ≤ 𝑧)) |
| 64 | 63 | adantr 276 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 <
𝑧 ↔ 2 ≤ 𝑧)) |
| 65 | | zltlem1 9400 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 < 𝑃 ↔ 𝑧 ≤ (𝑃 − 1))) |
| 66 | 64, 65 | anbi12d 473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 <
𝑧 ∧ 𝑧 < 𝑃) ↔ (2 ≤ 𝑧 ∧ 𝑧 ≤ (𝑃 − 1)))) |
| 67 | | peano2zm 9381 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ℤ → (𝑃 − 1) ∈
ℤ) |
| 68 | | 2z 9371 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℤ |
| 69 | | elfz 10106 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 2 ∈
ℤ ∧ (𝑃 − 1)
∈ ℤ) → (𝑧
∈ (2...(𝑃 − 1))
↔ (2 ≤ 𝑧 ∧
𝑧 ≤ (𝑃 − 1)))) |
| 70 | 68, 69 | mp3an2 1336 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ)
→ (𝑧 ∈
(2...(𝑃 − 1)) ↔
(2 ≤ 𝑧 ∧ 𝑧 ≤ (𝑃 − 1)))) |
| 71 | 67, 70 | sylan2 286 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧 ∧ 𝑧 ≤ (𝑃 − 1)))) |
| 72 | 66, 71 | bitr4d 191 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 <
𝑧 ∧ 𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))) |
| 73 | 16, 58, 72 | syl2an 289 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))) |
| 74 | 73 | adantr 276 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) ∧ 𝑧 ∥ 𝑃) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))) |
| 75 | 57, 74 | bitr3d 190 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) ∧ 𝑧 ∥ 𝑃) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))) |
| 76 | 75 | anasss 399 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℕ ∧ (𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃)) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))) |
| 77 | 76 | expcom 116 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → (𝑧 ∈ ℕ → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))) |
| 78 | 77 | pm5.32d 450 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1))))) |
| 79 | | fzssuz 10157 |
. . . . . . . . . . . . 13
⊢
(2...(𝑃 − 1))
⊆ (ℤ≥‘2) |
| 80 | | 2eluzge1 9667 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
(ℤ≥‘1) |
| 81 | | uzss 9639 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
(ℤ≥‘1) → (ℤ≥‘2)
⊆ (ℤ≥‘1)) |
| 82 | 80, 81 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(ℤ≥‘2) ⊆
(ℤ≥‘1) |
| 83 | 79, 82 | sstri 3193 |
. . . . . . . . . . . 12
⊢
(2...(𝑃 − 1))
⊆ (ℤ≥‘1) |
| 84 | | nnuz 9654 |
. . . . . . . . . . . 12
⊢ ℕ =
(ℤ≥‘1) |
| 85 | 83, 84 | sseqtrri 3219 |
. . . . . . . . . . 11
⊢
(2...(𝑃 − 1))
⊆ ℕ |
| 86 | 85 | sseli 3180 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (2...(𝑃 − 1)) → 𝑧 ∈ ℕ) |
| 87 | 86 | pm4.71ri 392 |
. . . . . . . . 9
⊢ (𝑧 ∈ (2...(𝑃 − 1)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1)))) |
| 88 | 78, 87 | bitr4di 198 |
. . . . . . . 8
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ 𝑧 ∈ (2...(𝑃 − 1)))) |
| 89 | 88 | notbid 668 |
. . . . . . 7
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → (¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1)))) |
| 90 | 14, 89 | bitrd 188 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1)))) |
| 91 | 90 | pm5.74da 443 |
. . . . 5
⊢ (𝑃 ∈
(ℤ≥‘2) → ((𝑧 ∥ 𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∥ 𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1))))) |
| 92 | | bi2.04 248 |
. . . . 5
⊢ ((𝑧 ∥ 𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
| 93 | | con2b 670 |
. . . . 5
⊢ ((𝑧 ∥ 𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧 ∥ 𝑃)) |
| 94 | 91, 92, 93 | 3bitr3g 222 |
. . . 4
⊢ (𝑃 ∈
(ℤ≥‘2) → ((𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧 ∥ 𝑃))) |
| 95 | 94 | ralbidv2 2499 |
. . 3
⊢ (𝑃 ∈
(ℤ≥‘2) → (∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧 ∥ 𝑃)) |
| 96 | 95 | pm5.32i 454 |
. 2
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑃 ∈ (ℤ≥‘2)
∧ ∀𝑧 ∈
(2...(𝑃 − 1)) ¬
𝑧 ∥ 𝑃)) |
| 97 | 1, 96 | bitri 184 |
1
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧 ∥ 𝑃)) |