Proof of Theorem isprm3
Step | Hyp | Ref
| Expression |
1 | | isprm2 12049 |
. 2
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
2 | | dvdszrcl 11732 |
. . . . . . . . . . 11
⊢ (𝑧 ∥ 𝑃 → (𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ)) |
3 | 2 | simpld 111 |
. . . . . . . . . 10
⊢ (𝑧 ∥ 𝑃 → 𝑧 ∈ ℤ) |
4 | | 1zzd 9218 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → 1 ∈ ℤ) |
5 | | zdceq 9266 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℤ ∧ 1 ∈
ℤ) → DECID 𝑧 = 1) |
6 | 3, 4, 5 | syl2an2 584 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → DECID 𝑧 = 1) |
7 | 2 | simprd 113 |
. . . . . . . . . . 11
⊢ (𝑧 ∥ 𝑃 → 𝑃 ∈ ℤ) |
8 | 7 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → 𝑃 ∈ ℤ) |
9 | | zdceq 9266 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
DECID 𝑧 =
𝑃) |
10 | 3, 8, 9 | syl2an2 584 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → DECID 𝑧 = 𝑃) |
11 | | dcor 925 |
. . . . . . . . 9
⊢
(DECID 𝑧 = 1 → (DECID 𝑧 = 𝑃 → DECID (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
12 | 6, 10, 11 | sylc 62 |
. . . . . . . 8
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → DECID (𝑧 = 1 ∨ 𝑧 = 𝑃)) |
13 | | imandc 879 |
. . . . . . . 8
⊢
(DECID (𝑧 = 1 ∨ 𝑧 = 𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
14 | 12, 13 | syl 14 |
. . . . . . 7
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
15 | | eluz2nn 9504 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℕ) |
16 | | nnz 9210 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℤ) |
17 | | dvdsle 11782 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑧 ∥ 𝑃 → 𝑧 ≤ 𝑃)) |
18 | 16, 17 | sylan 281 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧 ∥ 𝑃 → 𝑧 ≤ 𝑃)) |
19 | | nnge1 8880 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℕ → 1 ≤
𝑧) |
20 | 19 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → 1 ≤
𝑧) |
21 | 18, 20 | jctild 314 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧 ∥ 𝑃 → (1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃))) |
22 | 15, 21 | sylan2 284 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) → (𝑧 ∥ 𝑃 → (1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃))) |
23 | | nnz 9210 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℤ) |
24 | | zre 9195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℝ) |
25 | | 1re 7898 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℝ |
26 | | leltap 8523 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((1
∈ ℝ ∧ 𝑧
∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧 ↔ 𝑧 # 1)) |
27 | 25, 26 | mp3an1 1314 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ ℝ ∧ 1 ≤
𝑧) → (1 < 𝑧 ↔ 𝑧 # 1)) |
28 | 24, 27 | sylan 281 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℤ ∧ 1 ≤
𝑧) → (1 < 𝑧 ↔ 𝑧 # 1)) |
29 | | 1z 9217 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℤ |
30 | | zapne 9265 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑧 ∈ ℤ ∧ 1 ∈
ℤ) → (𝑧 # 1
↔ 𝑧 ≠
1)) |
31 | 29, 30 | mpan2 422 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ ℤ → (𝑧 # 1 ↔ 𝑧 ≠ 1)) |
32 | 31 | adantr 274 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℤ ∧ 1 ≤
𝑧) → (𝑧 # 1 ↔ 𝑧 ≠ 1)) |
33 | 28, 32 | bitrd 187 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ ℤ ∧ 1 ≤
𝑧) → (1 < 𝑧 ↔ 𝑧 ≠ 1)) |
34 | 33 | 3adant2 1006 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 1 ≤
𝑧) → (1 < 𝑧 ↔ 𝑧 ≠ 1)) |
35 | 34 | 3expia 1195 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 ≤
𝑧 → (1 < 𝑧 ↔ 𝑧 ≠ 1))) |
36 | | zre 9195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃 ∈ ℤ → 𝑃 ∈
ℝ) |
37 | | leltap 8523 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 𝑧 ≤ 𝑃) → (𝑧 < 𝑃 ↔ 𝑃 # 𝑧)) |
38 | 24, 37 | syl3an1 1261 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℝ ∧ 𝑧 ≤ 𝑃) → (𝑧 < 𝑃 ↔ 𝑃 # 𝑧)) |
39 | 36, 38 | syl3an2 1262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑧 ≤ 𝑃) → (𝑧 < 𝑃 ↔ 𝑃 # 𝑧)) |
40 | | zapne 9265 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑃 # 𝑧 ↔ 𝑃 ≠ 𝑧)) |
41 | 40 | ancoms 266 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑃 # 𝑧 ↔ 𝑃 ≠ 𝑧)) |
42 | 41 | 3adant3 1007 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑧 ≤ 𝑃) → (𝑃 # 𝑧 ↔ 𝑃 ≠ 𝑧)) |
43 | 39, 42 | bitrd 187 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑧 ≤ 𝑃) → (𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧)) |
44 | 43 | 3expia 1195 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 ≤ 𝑃 → (𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧))) |
45 | 35, 44 | anim12d 333 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 ≤
𝑧 ∧ 𝑧 ≤ 𝑃) → ((1 < 𝑧 ↔ 𝑧 ≠ 1) ∧ (𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧)))) |
46 | 23, 45 | sylan2 284 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤
𝑧 ∧ 𝑧 ≤ 𝑃) → ((1 < 𝑧 ↔ 𝑧 ≠ 1) ∧ (𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧)))) |
47 | | pm4.38 595 |
. . . . . . . . . . . . . . . . . 18
⊢ (((1 <
𝑧 ↔ 𝑧 ≠ 1) ∧ (𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧)) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ (𝑧 ≠ 1 ∧ 𝑃 ≠ 𝑧))) |
48 | | df-ne 2337 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ≠ 1 ↔ ¬ 𝑧 = 1) |
49 | | nesym 2381 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃 ≠ 𝑧 ↔ ¬ 𝑧 = 𝑃) |
50 | 48, 49 | anbi12i 456 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ≠ 1 ∧ 𝑃 ≠ 𝑧) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃)) |
51 | | ioran 742 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
(𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃)) |
52 | 50, 51 | bitr4i 186 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ≠ 1 ∧ 𝑃 ≠ 𝑧) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) |
53 | 47, 52 | bitrdi 195 |
. . . . . . . . . . . . . . . . 17
⊢ (((1 <
𝑧 ↔ 𝑧 ≠ 1) ∧ (𝑧 < 𝑃 ↔ 𝑃 ≠ 𝑧)) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
54 | 46, 53 | syl6 33 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤
𝑧 ∧ 𝑧 ≤ 𝑃) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
55 | 16, 15, 54 | syl2an 287 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) → ((1 ≤ 𝑧 ∧ 𝑧 ≤ 𝑃) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
56 | 22, 55 | syld 45 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) → (𝑧 ∥ 𝑃 → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
57 | 56 | imp 123 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) ∧ 𝑧 ∥ 𝑃) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
58 | | eluzelz 9475 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℤ) |
59 | | zltp1le 9245 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1
∈ ℤ ∧ 𝑧
∈ ℤ) → (1 < 𝑧 ↔ (1 + 1) ≤ 𝑧)) |
60 | 29, 59 | mpan 421 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℤ → (1 <
𝑧 ↔ (1 + 1) ≤ 𝑧)) |
61 | | df-2 8916 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 = (1 +
1) |
62 | 61 | breq1i 3989 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 ≤
𝑧 ↔ (1 + 1) ≤ 𝑧) |
63 | 60, 62 | bitr4di 197 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℤ → (1 <
𝑧 ↔ 2 ≤ 𝑧)) |
64 | 63 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 <
𝑧 ↔ 2 ≤ 𝑧)) |
65 | | zltlem1 9248 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 < 𝑃 ↔ 𝑧 ≤ (𝑃 − 1))) |
66 | 64, 65 | anbi12d 465 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 <
𝑧 ∧ 𝑧 < 𝑃) ↔ (2 ≤ 𝑧 ∧ 𝑧 ≤ (𝑃 − 1)))) |
67 | | peano2zm 9229 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ℤ → (𝑃 − 1) ∈
ℤ) |
68 | | 2z 9219 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℤ |
69 | | elfz 9950 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 2 ∈
ℤ ∧ (𝑃 − 1)
∈ ℤ) → (𝑧
∈ (2...(𝑃 − 1))
↔ (2 ≤ 𝑧 ∧
𝑧 ≤ (𝑃 − 1)))) |
70 | 68, 69 | mp3an2 1315 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ)
→ (𝑧 ∈
(2...(𝑃 − 1)) ↔
(2 ≤ 𝑧 ∧ 𝑧 ≤ (𝑃 − 1)))) |
71 | 67, 70 | sylan2 284 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧 ∧ 𝑧 ≤ (𝑃 − 1)))) |
72 | 66, 71 | bitr4d 190 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 <
𝑧 ∧ 𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))) |
73 | 16, 58, 72 | syl2an 287 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))) |
74 | 73 | adantr 274 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) ∧ 𝑧 ∥ 𝑃) → ((1 < 𝑧 ∧ 𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))) |
75 | 57, 74 | bitr3d 189 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ ℕ ∧ 𝑃 ∈
(ℤ≥‘2)) ∧ 𝑧 ∥ 𝑃) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))) |
76 | 75 | anasss 397 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℕ ∧ (𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃)) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))) |
77 | 76 | expcom 115 |
. . . . . . . . . 10
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → (𝑧 ∈ ℕ → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))) |
78 | 77 | pm5.32d 446 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1))))) |
79 | | fzssuz 10000 |
. . . . . . . . . . . . 13
⊢
(2...(𝑃 − 1))
⊆ (ℤ≥‘2) |
80 | | 2eluzge1 9514 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
(ℤ≥‘1) |
81 | | uzss 9486 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
(ℤ≥‘1) → (ℤ≥‘2)
⊆ (ℤ≥‘1)) |
82 | 80, 81 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(ℤ≥‘2) ⊆
(ℤ≥‘1) |
83 | 79, 82 | sstri 3151 |
. . . . . . . . . . . 12
⊢
(2...(𝑃 − 1))
⊆ (ℤ≥‘1) |
84 | | nnuz 9501 |
. . . . . . . . . . . 12
⊢ ℕ =
(ℤ≥‘1) |
85 | 83, 84 | sseqtrri 3177 |
. . . . . . . . . . 11
⊢
(2...(𝑃 − 1))
⊆ ℕ |
86 | 85 | sseli 3138 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (2...(𝑃 − 1)) → 𝑧 ∈ ℕ) |
87 | 86 | pm4.71ri 390 |
. . . . . . . . 9
⊢ (𝑧 ∈ (2...(𝑃 − 1)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1)))) |
88 | 78, 87 | bitr4di 197 |
. . . . . . . 8
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ 𝑧 ∈ (2...(𝑃 − 1)))) |
89 | 88 | notbid 657 |
. . . . . . 7
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → (¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1)))) |
90 | 14, 89 | bitrd 187 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑧 ∥ 𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1)))) |
91 | 90 | pm5.74da 440 |
. . . . 5
⊢ (𝑃 ∈
(ℤ≥‘2) → ((𝑧 ∥ 𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∥ 𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1))))) |
92 | | bi2.04 247 |
. . . . 5
⊢ ((𝑧 ∥ 𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
93 | | con2b 659 |
. . . . 5
⊢ ((𝑧 ∥ 𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧 ∥ 𝑃)) |
94 | 91, 92, 93 | 3bitr3g 221 |
. . . 4
⊢ (𝑃 ∈
(ℤ≥‘2) → ((𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧 ∥ 𝑃))) |
95 | 94 | ralbidv2 2468 |
. . 3
⊢ (𝑃 ∈
(ℤ≥‘2) → (∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧 ∥ 𝑃)) |
96 | 95 | pm5.32i 450 |
. 2
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑃 ∈ (ℤ≥‘2)
∧ ∀𝑧 ∈
(2...(𝑃 − 1)) ¬
𝑧 ∥ 𝑃)) |
97 | 1, 96 | bitri 183 |
1
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧 ∥ 𝑃)) |