ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm3 GIF version

Theorem isprm3 12606
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm3 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm3
StepHypRef Expression
1 isprm2 12605 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
2 dvdszrcl 12269 . . . . . . . . . . 11 (𝑧𝑃 → (𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ))
32simpld 112 . . . . . . . . . 10 (𝑧𝑃𝑧 ∈ ℤ)
4 1zzd 9441 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → 1 ∈ ℤ)
5 zdceq 9490 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑧 = 1)
63, 4, 5syl2an2 596 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → DECID 𝑧 = 1)
72simprd 114 . . . . . . . . . . 11 (𝑧𝑃𝑃 ∈ ℤ)
87adantl 277 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → 𝑃 ∈ ℤ)
9 zdceq 9490 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → DECID 𝑧 = 𝑃)
103, 8, 9syl2an2 596 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → DECID 𝑧 = 𝑃)
11 dcor 940 . . . . . . . . 9 (DECID 𝑧 = 1 → (DECID 𝑧 = 𝑃DECID (𝑧 = 1 ∨ 𝑧 = 𝑃)))
126, 10, 11sylc 62 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → DECID (𝑧 = 1 ∨ 𝑧 = 𝑃))
13 imandc 893 . . . . . . . 8 (DECID (𝑧 = 1 ∨ 𝑧 = 𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
1412, 13syl 14 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
15 eluz2nn 9729 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
16 nnz 9433 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
17 dvdsle 12321 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
1816, 17sylan 283 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
19 nnge1 9101 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ → 1 ≤ 𝑧)
2019adantr 276 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → 1 ≤ 𝑧)
2118, 20jctild 316 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃 → (1 ≤ 𝑧𝑧𝑃)))
2215, 21sylan2 286 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → (𝑧𝑃 → (1 ≤ 𝑧𝑧𝑃)))
23 nnz 9433 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
24 zre 9418 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
25 1re 8113 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
26 leltap 8740 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 # 1))
2725, 26mp3an1 1339 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 # 1))
2824, 27sylan 283 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 # 1))
29 1z 9440 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℤ
30 zapne 9489 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑧 # 1 ↔ 𝑧 ≠ 1))
3129, 30mpan2 425 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℤ → (𝑧 # 1 ↔ 𝑧 ≠ 1))
3231adantr 276 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 1 ≤ 𝑧) → (𝑧 # 1 ↔ 𝑧 ≠ 1))
3328, 32bitrd 188 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℤ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 ≠ 1))
34333adant2 1021 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 ≠ 1))
35343expia 1210 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 ≤ 𝑧 → (1 < 𝑧𝑧 ≠ 1)))
36 zre 9418 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
37 leltap 8740 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 𝑧𝑃) → (𝑧 < 𝑃𝑃 # 𝑧))
3824, 37syl3an1 1285 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℝ ∧ 𝑧𝑃) → (𝑧 < 𝑃𝑃 # 𝑧))
3936, 38syl3an2 1286 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑧𝑃) → (𝑧 < 𝑃𝑃 # 𝑧))
40 zapne 9489 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑃 # 𝑧𝑃𝑧))
4140ancoms 268 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑃 # 𝑧𝑃𝑧))
42413adant3 1022 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑧𝑃) → (𝑃 # 𝑧𝑃𝑧))
4339, 42bitrd 188 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑧𝑃) → (𝑧 < 𝑃𝑃𝑧))
44433expia 1210 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧𝑃 → (𝑧 < 𝑃𝑃𝑧)))
4535, 44anim12d 335 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧))))
4623, 45sylan2 286 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧))))
47 pm4.38 607 . . . . . . . . . . . . . . . . . 18 (((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧)) → ((1 < 𝑧𝑧 < 𝑃) ↔ (𝑧 ≠ 1 ∧ 𝑃𝑧)))
48 df-ne 2381 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ≠ 1 ↔ ¬ 𝑧 = 1)
49 nesym 2425 . . . . . . . . . . . . . . . . . . . 20 (𝑃𝑧 ↔ ¬ 𝑧 = 𝑃)
5048, 49anbi12i 460 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ≠ 1 ∧ 𝑃𝑧) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃))
51 ioran 756 . . . . . . . . . . . . . . . . . . 19 (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃))
5250, 51bitr4i 187 . . . . . . . . . . . . . . . . . 18 ((𝑧 ≠ 1 ∧ 𝑃𝑧) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))
5347, 52bitrdi 196 . . . . . . . . . . . . . . . . 17 (((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧)) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))
5446, 53syl6 33 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
5516, 15, 54syl2an 289 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
5622, 55syld 45 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → (𝑧𝑃 → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
5756imp 124 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))
58 eluzelz 9699 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
59 zltp1le 9469 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (1 < 𝑧 ↔ (1 + 1) ≤ 𝑧))
6029, 59mpan 424 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → (1 < 𝑧 ↔ (1 + 1) ≤ 𝑧))
61 df-2 9137 . . . . . . . . . . . . . . . . . . . 20 2 = (1 + 1)
6261breq1i 4069 . . . . . . . . . . . . . . . . . . 19 (2 ≤ 𝑧 ↔ (1 + 1) ≤ 𝑧)
6360, 62bitr4di 198 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℤ → (1 < 𝑧 ↔ 2 ≤ 𝑧))
6463adantr 276 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 < 𝑧 ↔ 2 ≤ 𝑧))
65 zltlem1 9472 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
6664, 65anbi12d 473 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 < 𝑧𝑧 < 𝑃) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
67 peano2zm 9452 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
68 2z 9442 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
69 elfz 10178 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
7068, 69mp3an2 1340 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
7167, 70sylan2 286 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
7266, 71bitr4d 191 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
7316, 58, 72syl2an 289 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
7473adantr 276 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
7557, 74bitr3d 190 . . . . . . . . . . . 12 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
7675anasss 399 . . . . . . . . . . 11 ((𝑧 ∈ ℕ ∧ (𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃)) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
7776expcom 116 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → (𝑧 ∈ ℕ → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))))
7877pm5.32d 450 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1)))))
79 fzssuz 10229 . . . . . . . . . . . . 13 (2...(𝑃 − 1)) ⊆ (ℤ‘2)
80 2eluzge1 9739 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘1)
81 uzss 9711 . . . . . . . . . . . . . 14 (2 ∈ (ℤ‘1) → (ℤ‘2) ⊆ (ℤ‘1))
8280, 81ax-mp 5 . . . . . . . . . . . . 13 (ℤ‘2) ⊆ (ℤ‘1)
8379, 82sstri 3213 . . . . . . . . . . . 12 (2...(𝑃 − 1)) ⊆ (ℤ‘1)
84 nnuz 9726 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
8583, 84sseqtrri 3239 . . . . . . . . . . 11 (2...(𝑃 − 1)) ⊆ ℕ
8685sseli 3200 . . . . . . . . . 10 (𝑧 ∈ (2...(𝑃 − 1)) → 𝑧 ∈ ℕ)
8786pm4.71ri 392 . . . . . . . . 9 (𝑧 ∈ (2...(𝑃 − 1)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1))))
8878, 87bitr4di 198 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
8988notbid 671 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → (¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1))))
9014, 89bitrd 188 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1))))
9190pm5.74da 443 . . . . 5 (𝑃 ∈ (ℤ‘2) → ((𝑧𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1)))))
92 bi2.04 248 . . . . 5 ((𝑧𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
93 con2b 673 . . . . 5 ((𝑧𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧𝑃))
9491, 92, 933bitr3g 222 . . . 4 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧𝑃)))
9594ralbidv2 2512 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
9695pm5.32i 454 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
971, 96bitri 184 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 712  DECID wdc 838  w3a 983   = wceq 1375  wcel 2180  wne 2380  wral 2488  wss 3177   class class class wbr 4062  cfv 5294  (class class class)co 5974  cr 7966  1c1 7968   + caddc 7970   < clt 8149  cle 8150  cmin 8285   # cap 8696  cn 9078  2c2 9129  cz 9414  cuz 9690  ...cfz 10172  cdvds 12264  cprime 12595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-1o 6532  df-2o 6533  df-er 6650  df-en 6858  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265  df-prm 12596
This theorem is referenced by:  prmind2  12608  2prm  12615  3prm  12616  prmdc  12618  isprm5  12630  mersenne  15636
  Copyright terms: Public domain W3C validator