ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm3 GIF version

Theorem isprm3 12072
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm3 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm3
StepHypRef Expression
1 isprm2 12071 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
2 dvdszrcl 11754 . . . . . . . . . . 11 (𝑧𝑃 → (𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ))
32simpld 111 . . . . . . . . . 10 (𝑧𝑃𝑧 ∈ ℤ)
4 1zzd 9239 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → 1 ∈ ℤ)
5 zdceq 9287 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑧 = 1)
63, 4, 5syl2an2 589 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → DECID 𝑧 = 1)
72simprd 113 . . . . . . . . . . 11 (𝑧𝑃𝑃 ∈ ℤ)
87adantl 275 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → 𝑃 ∈ ℤ)
9 zdceq 9287 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → DECID 𝑧 = 𝑃)
103, 8, 9syl2an2 589 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → DECID 𝑧 = 𝑃)
11 dcor 930 . . . . . . . . 9 (DECID 𝑧 = 1 → (DECID 𝑧 = 𝑃DECID (𝑧 = 1 ∨ 𝑧 = 𝑃)))
126, 10, 11sylc 62 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → DECID (𝑧 = 1 ∨ 𝑧 = 𝑃))
13 imandc 884 . . . . . . . 8 (DECID (𝑧 = 1 ∨ 𝑧 = 𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
1412, 13syl 14 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
15 eluz2nn 9525 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
16 nnz 9231 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
17 dvdsle 11804 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
1816, 17sylan 281 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
19 nnge1 8901 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℕ → 1 ≤ 𝑧)
2019adantr 274 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → 1 ≤ 𝑧)
2118, 20jctild 314 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃 → (1 ≤ 𝑧𝑧𝑃)))
2215, 21sylan2 284 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → (𝑧𝑃 → (1 ≤ 𝑧𝑧𝑃)))
23 nnz 9231 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
24 zre 9216 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
25 1re 7919 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
26 leltap 8544 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 # 1))
2725, 26mp3an1 1319 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 # 1))
2824, 27sylan 281 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 # 1))
29 1z 9238 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℤ
30 zapne 9286 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑧 # 1 ↔ 𝑧 ≠ 1))
3129, 30mpan2 423 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℤ → (𝑧 # 1 ↔ 𝑧 ≠ 1))
3231adantr 274 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 1 ≤ 𝑧) → (𝑧 # 1 ↔ 𝑧 ≠ 1))
3328, 32bitrd 187 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℤ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 ≠ 1))
34333adant2 1011 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 1 ≤ 𝑧) → (1 < 𝑧𝑧 ≠ 1))
35343expia 1200 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 ≤ 𝑧 → (1 < 𝑧𝑧 ≠ 1)))
36 zre 9216 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
37 leltap 8544 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 𝑧𝑃) → (𝑧 < 𝑃𝑃 # 𝑧))
3824, 37syl3an1 1266 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℝ ∧ 𝑧𝑃) → (𝑧 < 𝑃𝑃 # 𝑧))
3936, 38syl3an2 1267 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑧𝑃) → (𝑧 < 𝑃𝑃 # 𝑧))
40 zapne 9286 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑃 # 𝑧𝑃𝑧))
4140ancoms 266 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑃 # 𝑧𝑃𝑧))
42413adant3 1012 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑧𝑃) → (𝑃 # 𝑧𝑃𝑧))
4339, 42bitrd 187 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑧𝑃) → (𝑧 < 𝑃𝑃𝑧))
44433expia 1200 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧𝑃 → (𝑧 < 𝑃𝑃𝑧)))
4535, 44anim12d 333 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧))))
4623, 45sylan2 284 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧))))
47 pm4.38 600 . . . . . . . . . . . . . . . . . 18 (((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧)) → ((1 < 𝑧𝑧 < 𝑃) ↔ (𝑧 ≠ 1 ∧ 𝑃𝑧)))
48 df-ne 2341 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ≠ 1 ↔ ¬ 𝑧 = 1)
49 nesym 2385 . . . . . . . . . . . . . . . . . . . 20 (𝑃𝑧 ↔ ¬ 𝑧 = 𝑃)
5048, 49anbi12i 457 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ≠ 1 ∧ 𝑃𝑧) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃))
51 ioran 747 . . . . . . . . . . . . . . . . . . 19 (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 ∧ ¬ 𝑧 = 𝑃))
5250, 51bitr4i 186 . . . . . . . . . . . . . . . . . 18 ((𝑧 ≠ 1 ∧ 𝑃𝑧) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))
5347, 52bitrdi 195 . . . . . . . . . . . . . . . . 17 (((1 < 𝑧𝑧 ≠ 1) ∧ (𝑧 < 𝑃𝑃𝑧)) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))
5446, 53syl6 33 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
5516, 15, 54syl2an 287 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → ((1 ≤ 𝑧𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
5622, 55syld 45 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → (𝑧𝑃 → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
5756imp 123 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)))
58 eluzelz 9496 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
59 zltp1le 9266 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (1 < 𝑧 ↔ (1 + 1) ≤ 𝑧))
6029, 59mpan 422 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → (1 < 𝑧 ↔ (1 + 1) ≤ 𝑧))
61 df-2 8937 . . . . . . . . . . . . . . . . . . . 20 2 = (1 + 1)
6261breq1i 3996 . . . . . . . . . . . . . . . . . . 19 (2 ≤ 𝑧 ↔ (1 + 1) ≤ 𝑧)
6360, 62bitr4di 197 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℤ → (1 < 𝑧 ↔ 2 ≤ 𝑧))
6463adantr 274 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (1 < 𝑧 ↔ 2 ≤ 𝑧))
65 zltlem1 9269 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 < 𝑃𝑧 ≤ (𝑃 − 1)))
6664, 65anbi12d 470 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 < 𝑧𝑧 < 𝑃) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
67 peano2zm 9250 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
68 2z 9240 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
69 elfz 9971 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
7068, 69mp3an2 1320 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
7167, 70sylan2 284 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑧 ∈ (2...(𝑃 − 1)) ↔ (2 ≤ 𝑧𝑧 ≤ (𝑃 − 1))))
7266, 71bitr4d 190 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
7316, 58, 72syl2an 287 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
7473adantr 274 . . . . . . . . . . . . 13 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → ((1 < 𝑧𝑧 < 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
7557, 74bitr3d 189 . . . . . . . . . . . 12 (((𝑧 ∈ ℕ ∧ 𝑃 ∈ (ℤ‘2)) ∧ 𝑧𝑃) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
7675anasss 397 . . . . . . . . . . 11 ((𝑧 ∈ ℕ ∧ (𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃)) → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
7776expcom 115 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → (𝑧 ∈ ℕ → (¬ (𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ 𝑧 ∈ (2...(𝑃 − 1)))))
7877pm5.32d 447 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1)))))
79 fzssuz 10021 . . . . . . . . . . . . 13 (2...(𝑃 − 1)) ⊆ (ℤ‘2)
80 2eluzge1 9535 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘1)
81 uzss 9507 . . . . . . . . . . . . . 14 (2 ∈ (ℤ‘1) → (ℤ‘2) ⊆ (ℤ‘1))
8280, 81ax-mp 5 . . . . . . . . . . . . 13 (ℤ‘2) ⊆ (ℤ‘1)
8379, 82sstri 3156 . . . . . . . . . . . 12 (2...(𝑃 − 1)) ⊆ (ℤ‘1)
84 nnuz 9522 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
8583, 84sseqtrri 3182 . . . . . . . . . . 11 (2...(𝑃 − 1)) ⊆ ℕ
8685sseli 3143 . . . . . . . . . 10 (𝑧 ∈ (2...(𝑃 − 1)) → 𝑧 ∈ ℕ)
8786pm4.71ri 390 . . . . . . . . 9 (𝑧 ∈ (2...(𝑃 − 1)) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (2...(𝑃 − 1))))
8878, 87bitr4di 197 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ 𝑧 ∈ (2...(𝑃 − 1))))
8988notbid 662 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → (¬ (𝑧 ∈ ℕ ∧ ¬ (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1))))
9014, 89bitrd 187 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ¬ 𝑧 ∈ (2...(𝑃 − 1))))
9190pm5.74da 441 . . . . 5 (𝑃 ∈ (ℤ‘2) → ((𝑧𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1)))))
92 bi2.04 247 . . . . 5 ((𝑧𝑃 → (𝑧 ∈ ℕ → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
93 con2b 664 . . . . 5 ((𝑧𝑃 → ¬ 𝑧 ∈ (2...(𝑃 − 1))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧𝑃))
9491, 92, 933bitr3g 221 . . . 4 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℕ → (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑧 ∈ (2...(𝑃 − 1)) → ¬ 𝑧𝑃)))
9594ralbidv2 2472 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
9695pm5.32i 451 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
971, 96bitri 183 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829  w3a 973   = wceq 1348  wcel 2141  wne 2340  wral 2448  wss 3121   class class class wbr 3989  cfv 5198  (class class class)co 5853  cr 7773  1c1 7775   + caddc 7777   < clt 7954  cle 7955  cmin 8090   # cap 8500  cn 8878  2c2 8929  cz 9212  cuz 9487  ...cfz 9965  cdvds 11749  cprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-prm 12062
This theorem is referenced by:  prmind2  12074  2prm  12081  3prm  12082  prmdc  12084  isprm5  12096
  Copyright terms: Public domain W3C validator