ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0n0n1ge2b GIF version

Theorem nn0n0n1ge2b 9351
Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
Assertion
Ref Expression
nn0n0n1ge2b (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))

Proof of Theorem nn0n0n1ge2b
StepHypRef Expression
1 nn0n0n1ge2 9342 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)
213expib 1208 . 2 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁))
3 nn0z 9292 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 0z 9283 . . . . . 6 0 ∈ ℤ
5 zdceq 9347 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
63, 4, 5sylancl 413 . . . . 5 (𝑁 ∈ ℕ0DECID 𝑁 = 0)
76dcned 2366 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 0)
8 1z 9298 . . . . . 6 1 ∈ ℤ
9 zdceq 9347 . . . . . 6 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1)
103, 8, 9sylancl 413 . . . . 5 (𝑁 ∈ ℕ0DECID 𝑁 = 1)
1110dcned 2366 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 1)
127, 11dcand 934 . . 3 (𝑁 ∈ ℕ0DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))
13 ianordc 900 . . . . . 6 (DECID 𝑁 ≠ 0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1)))
147, 13syl 14 . . . . 5 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1)))
15 nnedc 2365 . . . . . . 7 (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
166, 15syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
17 nnedc 2365 . . . . . . 7 (DECID 𝑁 = 1 → (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1))
1810, 17syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1))
1916, 18orbi12d 794 . . . . 5 (𝑁 ∈ ℕ0 → ((¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)))
2014, 19bitrd 188 . . . 4 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)))
21 2pos 9029 . . . . . . . . . 10 0 < 2
22 breq1 4021 . . . . . . . . . 10 (𝑁 = 0 → (𝑁 < 2 ↔ 0 < 2))
2321, 22mpbiri 168 . . . . . . . . 9 (𝑁 = 0 → 𝑁 < 2)
2423a1d 22 . . . . . . . 8 (𝑁 = 0 → (𝑁 ∈ ℕ0𝑁 < 2))
25 1lt2 9107 . . . . . . . . . 10 1 < 2
26 breq1 4021 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 < 2 ↔ 1 < 2))
2725, 26mpbiri 168 . . . . . . . . 9 (𝑁 = 1 → 𝑁 < 2)
2827a1d 22 . . . . . . . 8 (𝑁 = 1 → (𝑁 ∈ ℕ0𝑁 < 2))
2924, 28jaoi 717 . . . . . . 7 ((𝑁 = 0 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0𝑁 < 2))
3029impcom 125 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → 𝑁 < 2)
31 2z 9300 . . . . . . . 8 2 ∈ ℤ
32 zltnle 9318 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
333, 31, 32sylancl 413 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
3433adantr 276 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
3530, 34mpbid 147 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → ¬ 2 ≤ 𝑁)
3635ex 115 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 = 0 ∨ 𝑁 = 1) → ¬ 2 ≤ 𝑁))
3720, 36sylbid 150 . . 3 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁))
38 condc 854 . . 3 (DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁) → (2 ≤ 𝑁 → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))))
3912, 37, 38sylc 62 . 2 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)))
402, 39impbid 129 1 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2160  wne 2360   class class class wbr 4018  0cc0 7830  1c1 7831   < clt 8011  cle 8012  2c2 8989  0cn0 9195  cz 9272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-addcom 7930  ax-addass 7932  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-0id 7938  ax-rnegex 7939  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-ltwlin 7943  ax-pre-lttrn 7944  ax-pre-ltadd 7946
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-inn 8939  df-2 8997  df-n0 9196  df-z 9273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator