Proof of Theorem nn0n0n1ge2b
| Step | Hyp | Ref
| Expression |
| 1 | | nn0n0n1ge2 9396 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) |
| 2 | 1 | 3expib 1208 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 ≠ 0 ∧
𝑁 ≠ 1) → 2 ≤
𝑁)) |
| 3 | | nn0z 9346 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 4 | | 0z 9337 |
. . . . . 6
⊢ 0 ∈
ℤ |
| 5 | | zdceq 9401 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) |
| 6 | 3, 4, 5 | sylancl 413 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ DECID 𝑁 = 0) |
| 7 | 6 | dcned 2373 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ DECID 𝑁 ≠ 0) |
| 8 | | 1z 9352 |
. . . . . 6
⊢ 1 ∈
ℤ |
| 9 | | zdceq 9401 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 1 ∈
ℤ) → DECID 𝑁 = 1) |
| 10 | 3, 8, 9 | sylancl 413 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ DECID 𝑁 = 1) |
| 11 | 10 | dcned 2373 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ DECID 𝑁 ≠ 1) |
| 12 | 7, 11 | dcand 934 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)) |
| 13 | | ianordc 900 |
. . . . . 6
⊢
(DECID 𝑁 ≠ 0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1))) |
| 14 | 7, 13 | syl 14 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (¬ (𝑁 ≠ 0
∧ 𝑁 ≠ 1) ↔
(¬ 𝑁 ≠ 0 ∨ ¬
𝑁 ≠
1))) |
| 15 | | nnedc 2372 |
. . . . . . 7
⊢
(DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) |
| 16 | 6, 15 | syl 14 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (¬ 𝑁 ≠ 0
↔ 𝑁 =
0)) |
| 17 | | nnedc 2372 |
. . . . . . 7
⊢
(DECID 𝑁 = 1 → (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1)) |
| 18 | 10, 17 | syl 14 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (¬ 𝑁 ≠ 1
↔ 𝑁 =
1)) |
| 19 | 16, 18 | orbi12d 794 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ((¬ 𝑁 ≠ 0
∨ ¬ 𝑁 ≠ 1) ↔
(𝑁 = 0 ∨ 𝑁 = 1))) |
| 20 | 14, 19 | bitrd 188 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (¬ (𝑁 ≠ 0
∧ 𝑁 ≠ 1) ↔
(𝑁 = 0 ∨ 𝑁 = 1))) |
| 21 | | 2pos 9081 |
. . . . . . . . . 10
⊢ 0 <
2 |
| 22 | | breq1 4036 |
. . . . . . . . . 10
⊢ (𝑁 = 0 → (𝑁 < 2 ↔ 0 < 2)) |
| 23 | 21, 22 | mpbiri 168 |
. . . . . . . . 9
⊢ (𝑁 = 0 → 𝑁 < 2) |
| 24 | 23 | a1d 22 |
. . . . . . . 8
⊢ (𝑁 = 0 → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
| 25 | | 1lt2 9160 |
. . . . . . . . . 10
⊢ 1 <
2 |
| 26 | | breq1 4036 |
. . . . . . . . . 10
⊢ (𝑁 = 1 → (𝑁 < 2 ↔ 1 < 2)) |
| 27 | 25, 26 | mpbiri 168 |
. . . . . . . . 9
⊢ (𝑁 = 1 → 𝑁 < 2) |
| 28 | 27 | a1d 22 |
. . . . . . . 8
⊢ (𝑁 = 1 → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
| 29 | 24, 28 | jaoi 717 |
. . . . . . 7
⊢ ((𝑁 = 0 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
| 30 | 29 | impcom 125 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 = 0 ∨ 𝑁 = 1)) → 𝑁 < 2) |
| 31 | | 2z 9354 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
| 32 | | zltnle 9372 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 2 ∈
ℤ) → (𝑁 < 2
↔ ¬ 2 ≤ 𝑁)) |
| 33 | 3, 31, 32 | sylancl 413 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑁 < 2 ↔
¬ 2 ≤ 𝑁)) |
| 34 | 33 | adantr 276 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁)) |
| 35 | 30, 34 | mpbid 147 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 = 0 ∨ 𝑁 = 1)) → ¬ 2 ≤ 𝑁) |
| 36 | 35 | ex 115 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 = 0 ∨ 𝑁 = 1) → ¬ 2 ≤ 𝑁)) |
| 37 | 20, 36 | sylbid 150 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (¬ (𝑁 ≠ 0
∧ 𝑁 ≠ 1) →
¬ 2 ≤ 𝑁)) |
| 38 | | condc 854 |
. . 3
⊢
(DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁) → (2 ≤ 𝑁 → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)))) |
| 39 | 12, 37, 38 | sylc 62 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (2 ≤ 𝑁 →
(𝑁 ≠ 0 ∧ 𝑁 ≠ 1))) |
| 40 | 2, 39 | impbid 129 |
1
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 ≠ 0 ∧
𝑁 ≠ 1) ↔ 2 ≤
𝑁)) |