ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0n0n1ge2b GIF version

Theorem nn0n0n1ge2b 9034
Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
Assertion
Ref Expression
nn0n0n1ge2b (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))

Proof of Theorem nn0n0n1ge2b
StepHypRef Expression
1 nn0n0n1ge2 9025 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)
213expib 1167 . 2 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁))
3 nn0z 8978 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 0z 8969 . . . . . 6 0 ∈ ℤ
5 zdceq 9030 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
63, 4, 5sylancl 407 . . . . 5 (𝑁 ∈ ℕ0DECID 𝑁 = 0)
76dcned 2288 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 0)
8 1z 8984 . . . . . 6 1 ∈ ℤ
9 zdceq 9030 . . . . . 6 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1)
103, 8, 9sylancl 407 . . . . 5 (𝑁 ∈ ℕ0DECID 𝑁 = 1)
1110dcned 2288 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 1)
12 dcan 901 . . . 4 (DECID 𝑁 ≠ 0 → (DECID 𝑁 ≠ 1 → DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)))
137, 11, 12sylc 62 . . 3 (𝑁 ∈ ℕ0DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))
14 ianordc 867 . . . . . 6 (DECID 𝑁 ≠ 0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1)))
157, 14syl 14 . . . . 5 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1)))
16 nnedc 2287 . . . . . . 7 (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
176, 16syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
18 nnedc 2287 . . . . . . 7 (DECID 𝑁 = 1 → (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1))
1910, 18syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1))
2017, 19orbi12d 765 . . . . 5 (𝑁 ∈ ℕ0 → ((¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)))
2115, 20bitrd 187 . . . 4 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)))
22 2pos 8721 . . . . . . . . . 10 0 < 2
23 breq1 3898 . . . . . . . . . 10 (𝑁 = 0 → (𝑁 < 2 ↔ 0 < 2))
2422, 23mpbiri 167 . . . . . . . . 9 (𝑁 = 0 → 𝑁 < 2)
2524a1d 22 . . . . . . . 8 (𝑁 = 0 → (𝑁 ∈ ℕ0𝑁 < 2))
26 1lt2 8793 . . . . . . . . . 10 1 < 2
27 breq1 3898 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 < 2 ↔ 1 < 2))
2826, 27mpbiri 167 . . . . . . . . 9 (𝑁 = 1 → 𝑁 < 2)
2928a1d 22 . . . . . . . 8 (𝑁 = 1 → (𝑁 ∈ ℕ0𝑁 < 2))
3025, 29jaoi 688 . . . . . . 7 ((𝑁 = 0 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0𝑁 < 2))
3130impcom 124 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → 𝑁 < 2)
32 2z 8986 . . . . . . . 8 2 ∈ ℤ
33 zltnle 9004 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
343, 32, 33sylancl 407 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
3534adantr 272 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
3631, 35mpbid 146 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → ¬ 2 ≤ 𝑁)
3736ex 114 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 = 0 ∨ 𝑁 = 1) → ¬ 2 ≤ 𝑁))
3821, 37sylbid 149 . . 3 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁))
39 condc 821 . . 3 (DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁) → (2 ≤ 𝑁 → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))))
4013, 38, 39sylc 62 . 2 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)))
412, 40impbid 128 1 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 680  DECID wdc 802   = wceq 1314  wcel 1463  wne 2282   class class class wbr 3895  0cc0 7547  1c1 7548   < clt 7724  cle 7725  2c2 8681  0cn0 8881  cz 8958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-2 8689  df-n0 8882  df-z 8959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator