ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0n0n1ge2b GIF version

Theorem nn0n0n1ge2b 9396
Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
Assertion
Ref Expression
nn0n0n1ge2b (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))

Proof of Theorem nn0n0n1ge2b
StepHypRef Expression
1 nn0n0n1ge2 9387 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)
213expib 1208 . 2 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁))
3 nn0z 9337 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 0z 9328 . . . . . 6 0 ∈ ℤ
5 zdceq 9392 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
63, 4, 5sylancl 413 . . . . 5 (𝑁 ∈ ℕ0DECID 𝑁 = 0)
76dcned 2370 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 0)
8 1z 9343 . . . . . 6 1 ∈ ℤ
9 zdceq 9392 . . . . . 6 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1)
103, 8, 9sylancl 413 . . . . 5 (𝑁 ∈ ℕ0DECID 𝑁 = 1)
1110dcned 2370 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 1)
127, 11dcand 934 . . 3 (𝑁 ∈ ℕ0DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))
13 ianordc 900 . . . . . 6 (DECID 𝑁 ≠ 0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1)))
147, 13syl 14 . . . . 5 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1)))
15 nnedc 2369 . . . . . . 7 (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
166, 15syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
17 nnedc 2369 . . . . . . 7 (DECID 𝑁 = 1 → (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1))
1810, 17syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1))
1916, 18orbi12d 794 . . . . 5 (𝑁 ∈ ℕ0 → ((¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)))
2014, 19bitrd 188 . . . 4 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)))
21 2pos 9073 . . . . . . . . . 10 0 < 2
22 breq1 4032 . . . . . . . . . 10 (𝑁 = 0 → (𝑁 < 2 ↔ 0 < 2))
2321, 22mpbiri 168 . . . . . . . . 9 (𝑁 = 0 → 𝑁 < 2)
2423a1d 22 . . . . . . . 8 (𝑁 = 0 → (𝑁 ∈ ℕ0𝑁 < 2))
25 1lt2 9151 . . . . . . . . . 10 1 < 2
26 breq1 4032 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 < 2 ↔ 1 < 2))
2725, 26mpbiri 168 . . . . . . . . 9 (𝑁 = 1 → 𝑁 < 2)
2827a1d 22 . . . . . . . 8 (𝑁 = 1 → (𝑁 ∈ ℕ0𝑁 < 2))
2924, 28jaoi 717 . . . . . . 7 ((𝑁 = 0 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0𝑁 < 2))
3029impcom 125 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → 𝑁 < 2)
31 2z 9345 . . . . . . . 8 2 ∈ ℤ
32 zltnle 9363 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
333, 31, 32sylancl 413 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
3433adantr 276 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
3530, 34mpbid 147 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → ¬ 2 ≤ 𝑁)
3635ex 115 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 = 0 ∨ 𝑁 = 1) → ¬ 2 ≤ 𝑁))
3720, 36sylbid 150 . . 3 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁))
38 condc 854 . . 3 (DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁) → (2 ≤ 𝑁 → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))))
3912, 37, 38sylc 62 . 2 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)))
402, 39impbid 129 1 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364   class class class wbr 4029  0cc0 7872  1c1 7873   < clt 8054  cle 8055  2c2 9033  0cn0 9240  cz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator