ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0n0n1ge2b GIF version

Theorem nn0n0n1ge2b 9270
Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
Assertion
Ref Expression
nn0n0n1ge2b (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))

Proof of Theorem nn0n0n1ge2b
StepHypRef Expression
1 nn0n0n1ge2 9261 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)
213expib 1196 . 2 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁))
3 nn0z 9211 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 0z 9202 . . . . . 6 0 ∈ ℤ
5 zdceq 9266 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
63, 4, 5sylancl 410 . . . . 5 (𝑁 ∈ ℕ0DECID 𝑁 = 0)
76dcned 2342 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 0)
8 1z 9217 . . . . . 6 1 ∈ ℤ
9 zdceq 9266 . . . . . 6 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1)
103, 8, 9sylancl 410 . . . . 5 (𝑁 ∈ ℕ0DECID 𝑁 = 1)
1110dcned 2342 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 1)
12 dcan2 924 . . . 4 (DECID 𝑁 ≠ 0 → (DECID 𝑁 ≠ 1 → DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)))
137, 11, 12sylc 62 . . 3 (𝑁 ∈ ℕ0DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))
14 ianordc 889 . . . . . 6 (DECID 𝑁 ≠ 0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1)))
157, 14syl 14 . . . . 5 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1)))
16 nnedc 2341 . . . . . . 7 (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
176, 16syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
18 nnedc 2341 . . . . . . 7 (DECID 𝑁 = 1 → (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1))
1910, 18syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1))
2017, 19orbi12d 783 . . . . 5 (𝑁 ∈ ℕ0 → ((¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)))
2115, 20bitrd 187 . . . 4 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)))
22 2pos 8948 . . . . . . . . . 10 0 < 2
23 breq1 3985 . . . . . . . . . 10 (𝑁 = 0 → (𝑁 < 2 ↔ 0 < 2))
2422, 23mpbiri 167 . . . . . . . . 9 (𝑁 = 0 → 𝑁 < 2)
2524a1d 22 . . . . . . . 8 (𝑁 = 0 → (𝑁 ∈ ℕ0𝑁 < 2))
26 1lt2 9026 . . . . . . . . . 10 1 < 2
27 breq1 3985 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 < 2 ↔ 1 < 2))
2826, 27mpbiri 167 . . . . . . . . 9 (𝑁 = 1 → 𝑁 < 2)
2928a1d 22 . . . . . . . 8 (𝑁 = 1 → (𝑁 ∈ ℕ0𝑁 < 2))
3025, 29jaoi 706 . . . . . . 7 ((𝑁 = 0 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0𝑁 < 2))
3130impcom 124 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → 𝑁 < 2)
32 2z 9219 . . . . . . . 8 2 ∈ ℤ
33 zltnle 9237 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
343, 32, 33sylancl 410 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
3534adantr 274 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
3631, 35mpbid 146 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → ¬ 2 ≤ 𝑁)
3736ex 114 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 = 0 ∨ 𝑁 = 1) → ¬ 2 ≤ 𝑁))
3821, 37sylbid 149 . . 3 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁))
39 condc 843 . . 3 (DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁) → (2 ≤ 𝑁 → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))))
4013, 38, 39sylc 62 . 2 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)))
412, 40impbid 128 1 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824   = wceq 1343  wcel 2136  wne 2336   class class class wbr 3982  0cc0 7753  1c1 7754   < clt 7933  cle 7934  2c2 8908  0cn0 9114  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator