Proof of Theorem nn0n0n1ge2b
Step | Hyp | Ref
| Expression |
1 | | nn0n0n1ge2 9261 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) |
2 | 1 | 3expib 1196 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 ≠ 0 ∧
𝑁 ≠ 1) → 2 ≤
𝑁)) |
3 | | nn0z 9211 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
4 | | 0z 9202 |
. . . . . 6
⊢ 0 ∈
ℤ |
5 | | zdceq 9266 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) |
6 | 3, 4, 5 | sylancl 410 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ DECID 𝑁 = 0) |
7 | 6 | dcned 2342 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ DECID 𝑁 ≠ 0) |
8 | | 1z 9217 |
. . . . . 6
⊢ 1 ∈
ℤ |
9 | | zdceq 9266 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 1 ∈
ℤ) → DECID 𝑁 = 1) |
10 | 3, 8, 9 | sylancl 410 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ DECID 𝑁 = 1) |
11 | 10 | dcned 2342 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ DECID 𝑁 ≠ 1) |
12 | | dcan2 924 |
. . . 4
⊢
(DECID 𝑁 ≠ 0 → (DECID 𝑁 ≠ 1 →
DECID (𝑁
≠ 0 ∧ 𝑁 ≠
1))) |
13 | 7, 11, 12 | sylc 62 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)) |
14 | | ianordc 889 |
. . . . . 6
⊢
(DECID 𝑁 ≠ 0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1))) |
15 | 7, 14 | syl 14 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (¬ (𝑁 ≠ 0
∧ 𝑁 ≠ 1) ↔
(¬ 𝑁 ≠ 0 ∨ ¬
𝑁 ≠
1))) |
16 | | nnedc 2341 |
. . . . . . 7
⊢
(DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) |
17 | 6, 16 | syl 14 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (¬ 𝑁 ≠ 0
↔ 𝑁 =
0)) |
18 | | nnedc 2341 |
. . . . . . 7
⊢
(DECID 𝑁 = 1 → (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1)) |
19 | 10, 18 | syl 14 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (¬ 𝑁 ≠ 1
↔ 𝑁 =
1)) |
20 | 17, 19 | orbi12d 783 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ((¬ 𝑁 ≠ 0
∨ ¬ 𝑁 ≠ 1) ↔
(𝑁 = 0 ∨ 𝑁 = 1))) |
21 | 15, 20 | bitrd 187 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (¬ (𝑁 ≠ 0
∧ 𝑁 ≠ 1) ↔
(𝑁 = 0 ∨ 𝑁 = 1))) |
22 | | 2pos 8948 |
. . . . . . . . . 10
⊢ 0 <
2 |
23 | | breq1 3985 |
. . . . . . . . . 10
⊢ (𝑁 = 0 → (𝑁 < 2 ↔ 0 < 2)) |
24 | 22, 23 | mpbiri 167 |
. . . . . . . . 9
⊢ (𝑁 = 0 → 𝑁 < 2) |
25 | 24 | a1d 22 |
. . . . . . . 8
⊢ (𝑁 = 0 → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
26 | | 1lt2 9026 |
. . . . . . . . . 10
⊢ 1 <
2 |
27 | | breq1 3985 |
. . . . . . . . . 10
⊢ (𝑁 = 1 → (𝑁 < 2 ↔ 1 < 2)) |
28 | 26, 27 | mpbiri 167 |
. . . . . . . . 9
⊢ (𝑁 = 1 → 𝑁 < 2) |
29 | 28 | a1d 22 |
. . . . . . . 8
⊢ (𝑁 = 1 → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
30 | 25, 29 | jaoi 706 |
. . . . . . 7
⊢ ((𝑁 = 0 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
31 | 30 | impcom 124 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 = 0 ∨ 𝑁 = 1)) → 𝑁 < 2) |
32 | | 2z 9219 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
33 | | zltnle 9237 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 2 ∈
ℤ) → (𝑁 < 2
↔ ¬ 2 ≤ 𝑁)) |
34 | 3, 32, 33 | sylancl 410 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑁 < 2 ↔
¬ 2 ≤ 𝑁)) |
35 | 34 | adantr 274 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁)) |
36 | 31, 35 | mpbid 146 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 = 0 ∨ 𝑁 = 1)) → ¬ 2 ≤ 𝑁) |
37 | 36 | ex 114 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 = 0 ∨ 𝑁 = 1) → ¬ 2 ≤ 𝑁)) |
38 | 21, 37 | sylbid 149 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (¬ (𝑁 ≠ 0
∧ 𝑁 ≠ 1) →
¬ 2 ≤ 𝑁)) |
39 | | condc 843 |
. . 3
⊢
(DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁) → (2 ≤ 𝑁 → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)))) |
40 | 13, 38, 39 | sylc 62 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (2 ≤ 𝑁 →
(𝑁 ≠ 0 ∧ 𝑁 ≠ 1))) |
41 | 2, 40 | impbid 128 |
1
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 ≠ 0 ∧
𝑁 ≠ 1) ↔ 2 ≤
𝑁)) |