ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0n0n1ge2b GIF version

Theorem nn0n0n1ge2b 9487
Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
Assertion
Ref Expression
nn0n0n1ge2b (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))

Proof of Theorem nn0n0n1ge2b
StepHypRef Expression
1 nn0n0n1ge2 9478 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)
213expib 1209 . 2 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁))
3 nn0z 9427 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 0z 9418 . . . . . 6 0 ∈ ℤ
5 zdceq 9483 . . . . . 6 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
63, 4, 5sylancl 413 . . . . 5 (𝑁 ∈ ℕ0DECID 𝑁 = 0)
76dcned 2384 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 0)
8 1z 9433 . . . . . 6 1 ∈ ℤ
9 zdceq 9483 . . . . . 6 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1)
103, 8, 9sylancl 413 . . . . 5 (𝑁 ∈ ℕ0DECID 𝑁 = 1)
1110dcned 2384 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 1)
127, 11dcand 935 . . 3 (𝑁 ∈ ℕ0DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))
13 ianordc 901 . . . . . 6 (DECID 𝑁 ≠ 0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1)))
147, 13syl 14 . . . . 5 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1)))
15 nnedc 2383 . . . . . . 7 (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
166, 15syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
17 nnedc 2383 . . . . . . 7 (DECID 𝑁 = 1 → (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1))
1810, 17syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1))
1916, 18orbi12d 795 . . . . 5 (𝑁 ∈ ℕ0 → ((¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)))
2014, 19bitrd 188 . . . 4 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)))
21 2pos 9162 . . . . . . . . . 10 0 < 2
22 breq1 4062 . . . . . . . . . 10 (𝑁 = 0 → (𝑁 < 2 ↔ 0 < 2))
2321, 22mpbiri 168 . . . . . . . . 9 (𝑁 = 0 → 𝑁 < 2)
2423a1d 22 . . . . . . . 8 (𝑁 = 0 → (𝑁 ∈ ℕ0𝑁 < 2))
25 1lt2 9241 . . . . . . . . . 10 1 < 2
26 breq1 4062 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 < 2 ↔ 1 < 2))
2725, 26mpbiri 168 . . . . . . . . 9 (𝑁 = 1 → 𝑁 < 2)
2827a1d 22 . . . . . . . 8 (𝑁 = 1 → (𝑁 ∈ ℕ0𝑁 < 2))
2924, 28jaoi 718 . . . . . . 7 ((𝑁 = 0 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0𝑁 < 2))
3029impcom 125 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → 𝑁 < 2)
31 2z 9435 . . . . . . . 8 2 ∈ ℤ
32 zltnle 9453 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
333, 31, 32sylancl 413 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
3433adantr 276 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
3530, 34mpbid 147 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → ¬ 2 ≤ 𝑁)
3635ex 115 . . . 4 (𝑁 ∈ ℕ0 → ((𝑁 = 0 ∨ 𝑁 = 1) → ¬ 2 ≤ 𝑁))
3720, 36sylbid 150 . . 3 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁))
38 condc 855 . . 3 (DECID (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁) → (2 ≤ 𝑁 → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))))
3912, 37, 38sylc 62 . 2 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1)))
402, 39impbid 129 1 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2178  wne 2378   class class class wbr 4059  0cc0 7960  1c1 7961   < clt 8142  cle 8143  2c2 9122  0cn0 9330  cz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator