![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neqned | GIF version |
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2385. One-way deduction form of df-ne 2365. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2414. (Revised by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
neqned.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neqned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqned.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
2 | df-ne 2365 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-ne 2365 |
This theorem is referenced by: neqne 2372 tfr1onlemsucaccv 6394 tfrcllemsucaccv 6407 enpr2d 6871 djune 7137 omp1eomlem 7153 difinfsn 7159 nnnninfeq2 7188 nninfisol 7192 netap 7314 2omotaplemap 7317 exmidapne 7320 xaddf 9910 xaddval 9911 xleaddadd 9953 flqltnz 10356 zfz1iso 10912 bezoutlemle 12145 eucalgval2 12191 eucalglt 12195 isprm2 12255 sqne2sq 12315 nnoddn2prmb 12400 ennnfonelemim 12581 ctinfomlemom 12584 hashfinmndnn 13013 logbgcd1irraplemexp 15100 lgsfcl2 15122 lgscllem 15123 lgsval2lem 15126 bj-charfunbi 15303 nnsf 15495 peano3nninf 15497 neapmkvlem 15557 |
Copyright terms: Public domain | W3C validator |