| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neqned | GIF version | ||
| Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2421. One-way deduction form of df-ne 2401. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2450. (Revised by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| neqned.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neqned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqned.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2401 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-ne 2401 |
| This theorem is referenced by: neqne 2408 tfr1onlemsucaccv 6493 tfrcllemsucaccv 6506 enpr2d 6980 djune 7253 omp1eomlem 7269 difinfsn 7275 nnnninfeq2 7304 nninfisol 7308 netap 7448 2omotaplemap 7451 exmidapne 7454 xaddf 10048 xaddval 10049 xleaddadd 10091 flqltnz 10515 zfz1iso 11071 bezoutlemle 12537 eucalgval2 12583 eucalglt 12587 isprm2 12647 sqne2sq 12707 nnoddn2prmb 12793 ennnfonelemim 13003 ctinfomlemom 13006 hashfinmndnn 13473 logbgcd1irraplemexp 15650 lgsfcl2 15693 lgscllem 15694 lgsval2lem 15697 uhgr2edg 16012 bj-charfunbi 16198 3dom 16381 pw1ndom3lem 16382 nnsf 16401 peano3nninf 16403 neapmkvlem 16465 |
| Copyright terms: Public domain | W3C validator |