| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neqned | GIF version | ||
| Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2401. One-way deduction form of df-ne 2381. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2430. (Revised by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| neqned.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neqned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqned.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2381 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1375 ≠ wne 2380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-ne 2381 |
| This theorem is referenced by: neqne 2388 tfr1onlemsucaccv 6457 tfrcllemsucaccv 6470 enpr2d 6942 djune 7213 omp1eomlem 7229 difinfsn 7235 nnnninfeq2 7264 nninfisol 7268 netap 7408 2omotaplemap 7411 exmidapne 7414 xaddf 10008 xaddval 10009 xleaddadd 10051 flqltnz 10474 zfz1iso 11030 bezoutlemle 12495 eucalgval2 12541 eucalglt 12545 isprm2 12605 sqne2sq 12665 nnoddn2prmb 12751 ennnfonelemim 12961 ctinfomlemom 12964 hashfinmndnn 13431 logbgcd1irraplemexp 15607 lgsfcl2 15650 lgscllem 15651 lgsval2lem 15654 uhgr2edg 15969 bj-charfunbi 16084 nnsf 16282 peano3nninf 16284 neapmkvlem 16346 |
| Copyright terms: Public domain | W3C validator |