| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neqned | GIF version | ||
| Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2388. One-way deduction form of df-ne 2368. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2417. (Revised by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| neqned.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neqned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqned.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2368 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: neqne 2375 tfr1onlemsucaccv 6400 tfrcllemsucaccv 6413 enpr2d 6877 djune 7145 omp1eomlem 7161 difinfsn 7167 nnnninfeq2 7196 nninfisol 7200 netap 7323 2omotaplemap 7326 exmidapne 7329 xaddf 9921 xaddval 9922 xleaddadd 9964 flqltnz 10379 zfz1iso 10935 bezoutlemle 12185 eucalgval2 12231 eucalglt 12235 isprm2 12295 sqne2sq 12355 nnoddn2prmb 12441 ennnfonelemim 12651 ctinfomlemom 12654 hashfinmndnn 13083 logbgcd1irraplemexp 15214 lgsfcl2 15257 lgscllem 15258 lgsval2lem 15261 bj-charfunbi 15467 nnsf 15659 peano3nninf 15661 neapmkvlem 15721 |
| Copyright terms: Public domain | W3C validator |