![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neqned | GIF version |
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2381. One-way deduction form of df-ne 2361. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2410. (Revised by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
neqned.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neqned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqned.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
2 | df-ne 2361 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-ne 2361 |
This theorem is referenced by: neqne 2368 tfr1onlemsucaccv 6360 tfrcllemsucaccv 6373 enpr2d 6835 djune 7095 omp1eomlem 7111 difinfsn 7117 nnnninfeq2 7145 nninfisol 7149 netap 7271 2omotaplemap 7274 exmidapne 7277 xaddf 9862 xaddval 9863 xleaddadd 9905 flqltnz 10305 zfz1iso 10839 bezoutlemle 12027 eucalgval2 12071 eucalglt 12075 isprm2 12135 sqne2sq 12195 nnoddn2prmb 12280 ennnfonelemim 12443 ctinfomlemom 12446 hashfinmndnn 12859 logbgcd1irraplemexp 14783 lgsfcl2 14804 lgscllem 14805 lgsval2lem 14808 bj-charfunbi 14960 nnsf 15152 peano3nninf 15154 neapmkvlem 15213 |
Copyright terms: Public domain | W3C validator |