Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neqned | GIF version |
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2361. One-way deduction form of df-ne 2341. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2390. (Revised by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
neqned.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neqned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqned.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
2 | df-ne 2341 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | sylibr 133 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1348 ≠ wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-ne 2341 |
This theorem is referenced by: neqne 2348 tfr1onlemsucaccv 6317 tfrcllemsucaccv 6330 enpr2d 6791 djune 7051 omp1eomlem 7067 difinfsn 7073 nnnninfeq2 7101 nninfisol 7105 xaddf 9788 xaddval 9789 xleaddadd 9831 flqltnz 10230 zfz1iso 10763 bezoutlemle 11950 eucalgval2 11994 eucalglt 11998 lcmval 12004 lcmcllem 12008 isprm2 12058 sqne2sq 12118 nnoddn2prmb 12203 ennnfonelemim 12366 ctinfomlemom 12369 hashfinmndnn 12655 logbgcd1irraplemexp 13639 lgsfcl2 13660 lgscllem 13661 lgsval2lem 13664 bj-charfunbi 13806 nnsf 13998 peano3nninf 14000 neapmkvlem 14058 |
Copyright terms: Public domain | W3C validator |