Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neqned | GIF version |
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2356. One-way deduction form of df-ne 2336. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2385. (Revised by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
neqned.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neqned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqned.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
2 | df-ne 2336 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | sylibr 133 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1343 ≠ wne 2335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-ne 2336 |
This theorem is referenced by: neqne 2343 tfr1onlemsucaccv 6305 tfrcllemsucaccv 6318 enpr2d 6779 djune 7039 omp1eomlem 7055 difinfsn 7061 nnnninfeq2 7089 nninfisol 7093 xaddf 9776 xaddval 9777 xleaddadd 9819 flqltnz 10218 zfz1iso 10750 bezoutlemle 11937 eucalgval2 11981 eucalglt 11985 lcmval 11991 lcmcllem 11995 isprm2 12045 sqne2sq 12105 nnoddn2prmb 12190 ennnfonelemim 12353 ctinfomlemom 12356 logbgcd1irraplemexp 13486 lgsfcl2 13507 lgscllem 13508 lgsval2lem 13511 bj-charfunbi 13653 nnsf 13845 peano3nninf 13847 neapmkvlem 13905 |
Copyright terms: Public domain | W3C validator |