![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neqned | GIF version |
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2368. One-way deduction form of df-ne 2348. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2397. (Revised by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
neqned.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neqned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqned.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
2 | df-ne 2348 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1353 ≠ wne 2347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-ne 2348 |
This theorem is referenced by: neqne 2355 tfr1onlemsucaccv 6342 tfrcllemsucaccv 6355 enpr2d 6817 djune 7077 omp1eomlem 7093 difinfsn 7099 nnnninfeq2 7127 nninfisol 7131 netap 7253 2omotaplemap 7256 exmidapne 7259 xaddf 9844 xaddval 9845 xleaddadd 9887 flqltnz 10287 zfz1iso 10821 bezoutlemle 12009 eucalgval2 12053 eucalglt 12057 lcmval 12063 lcmcllem 12067 isprm2 12117 sqne2sq 12177 nnoddn2prmb 12262 ennnfonelemim 12425 ctinfomlemom 12428 hashfinmndnn 12833 logbgcd1irraplemexp 14389 lgsfcl2 14410 lgscllem 14411 lgsval2lem 14414 bj-charfunbi 14566 nnsf 14757 peano3nninf 14759 neapmkvlem 14817 |
Copyright terms: Public domain | W3C validator |