| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neqned | GIF version | ||
| Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2388. One-way deduction form of df-ne 2368. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2417. (Revised by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| neqned.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neqned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqned.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2368 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: neqne 2375 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 enpr2d 6885 djune 7153 omp1eomlem 7169 difinfsn 7175 nnnninfeq2 7204 nninfisol 7208 netap 7339 2omotaplemap 7342 exmidapne 7345 xaddf 9938 xaddval 9939 xleaddadd 9981 flqltnz 10396 zfz1iso 10952 bezoutlemle 12202 eucalgval2 12248 eucalglt 12252 isprm2 12312 sqne2sq 12372 nnoddn2prmb 12458 ennnfonelemim 12668 ctinfomlemom 12671 hashfinmndnn 13136 logbgcd1irraplemexp 15290 lgsfcl2 15333 lgscllem 15334 lgsval2lem 15337 bj-charfunbi 15543 nnsf 15738 peano3nninf 15740 neapmkvlem 15802 |
| Copyright terms: Public domain | W3C validator |