![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neqned | GIF version |
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2368. One-way deduction form of df-ne 2348. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2397. (Revised by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
neqned.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neqned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqned.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
2 | df-ne 2348 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1353 ≠ wne 2347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-ne 2348 |
This theorem is referenced by: neqne 2355 tfr1onlemsucaccv 6341 tfrcllemsucaccv 6354 enpr2d 6816 djune 7076 omp1eomlem 7092 difinfsn 7098 nnnninfeq2 7126 nninfisol 7130 netap 7252 2omotaplemap 7255 exmidapne 7258 xaddf 9843 xaddval 9844 xleaddadd 9886 flqltnz 10286 zfz1iso 10820 bezoutlemle 12008 eucalgval2 12052 eucalglt 12056 lcmval 12062 lcmcllem 12066 isprm2 12116 sqne2sq 12176 nnoddn2prmb 12261 ennnfonelemim 12424 ctinfomlemom 12427 hashfinmndnn 12832 logbgcd1irraplemexp 14356 lgsfcl2 14377 lgscllem 14378 lgsval2lem 14381 bj-charfunbi 14533 nnsf 14724 peano3nninf 14726 neapmkvlem 14784 |
Copyright terms: Public domain | W3C validator |