| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neqned | GIF version | ||
| Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2398. One-way deduction form of df-ne 2378. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2427. (Revised by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| neqned.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neqned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqned.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2378 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ≠ wne 2377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-ne 2378 |
| This theorem is referenced by: neqne 2385 tfr1onlemsucaccv 6434 tfrcllemsucaccv 6447 enpr2d 6918 djune 7187 omp1eomlem 7203 difinfsn 7209 nnnninfeq2 7238 nninfisol 7242 netap 7373 2omotaplemap 7376 exmidapne 7379 xaddf 9973 xaddval 9974 xleaddadd 10016 flqltnz 10437 zfz1iso 10993 bezoutlemle 12373 eucalgval2 12419 eucalglt 12423 isprm2 12483 sqne2sq 12543 nnoddn2prmb 12629 ennnfonelemim 12839 ctinfomlemom 12842 hashfinmndnn 13308 logbgcd1irraplemexp 15484 lgsfcl2 15527 lgscllem 15528 lgsval2lem 15531 bj-charfunbi 15821 nnsf 16016 peano3nninf 16018 neapmkvlem 16080 |
| Copyright terms: Public domain | W3C validator |