ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neqned GIF version

Theorem neqned 2371
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2385. One-way deduction form of df-ne 2365. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2414. (Revised by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
neqned.1 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
neqned (𝜑𝐴𝐵)

Proof of Theorem neqned
StepHypRef Expression
1 neqned.1 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
2 df-ne 2365 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2sylibr 134 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-ne 2365
This theorem is referenced by:  neqne  2372  tfr1onlemsucaccv  6396  tfrcllemsucaccv  6409  enpr2d  6873  djune  7139  omp1eomlem  7155  difinfsn  7161  nnnninfeq2  7190  nninfisol  7194  netap  7316  2omotaplemap  7319  exmidapne  7322  xaddf  9913  xaddval  9914  xleaddadd  9956  flqltnz  10359  zfz1iso  10915  bezoutlemle  12148  eucalgval2  12194  eucalglt  12198  isprm2  12258  sqne2sq  12318  nnoddn2prmb  12403  ennnfonelemim  12584  ctinfomlemom  12587  hashfinmndnn  13016  logbgcd1irraplemexp  15141  lgsfcl2  15163  lgscllem  15164  lgsval2lem  15167  bj-charfunbi  15373  nnsf  15565  peano3nninf  15567  neapmkvlem  15627
  Copyright terms: Public domain W3C validator