Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neqned | GIF version |
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2361. One-way deduction form of df-ne 2341. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2390. (Revised by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
neqned.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neqned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqned.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
2 | df-ne 2341 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | sylibr 133 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1348 ≠ wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-ne 2341 |
This theorem is referenced by: neqne 2348 tfr1onlemsucaccv 6320 tfrcllemsucaccv 6333 enpr2d 6795 djune 7055 omp1eomlem 7071 difinfsn 7077 nnnninfeq2 7105 nninfisol 7109 xaddf 9801 xaddval 9802 xleaddadd 9844 flqltnz 10243 zfz1iso 10776 bezoutlemle 11963 eucalgval2 12007 eucalglt 12011 lcmval 12017 lcmcllem 12021 isprm2 12071 sqne2sq 12131 nnoddn2prmb 12216 ennnfonelemim 12379 ctinfomlemom 12382 hashfinmndnn 12668 logbgcd1irraplemexp 13680 lgsfcl2 13701 lgscllem 13702 lgsval2lem 13705 bj-charfunbi 13846 nnsf 14038 peano3nninf 14040 neapmkvlem 14098 |
Copyright terms: Public domain | W3C validator |