ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neqned GIF version

Theorem neqned 2387
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2401. One-way deduction form of df-ne 2381. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2430. (Revised by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
neqned.1 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
neqned (𝜑𝐴𝐵)

Proof of Theorem neqned
StepHypRef Expression
1 neqned.1 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
2 df-ne 2381 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2sylibr 134 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1375  wne 2380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-ne 2381
This theorem is referenced by:  neqne  2388  tfr1onlemsucaccv  6457  tfrcllemsucaccv  6470  enpr2d  6942  djune  7213  omp1eomlem  7229  difinfsn  7235  nnnninfeq2  7264  nninfisol  7268  netap  7408  2omotaplemap  7411  exmidapne  7414  xaddf  10008  xaddval  10009  xleaddadd  10051  flqltnz  10474  zfz1iso  11030  bezoutlemle  12495  eucalgval2  12541  eucalglt  12545  isprm2  12605  sqne2sq  12665  nnoddn2prmb  12751  ennnfonelemim  12961  ctinfomlemom  12964  hashfinmndnn  13431  logbgcd1irraplemexp  15607  lgsfcl2  15650  lgscllem  15651  lgsval2lem  15654  uhgr2edg  15969  bj-charfunbi  16084  nnsf  16282  peano3nninf  16284  neapmkvlem  16346
  Copyright terms: Public domain W3C validator