![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dcbii | GIF version |
Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
Ref | Expression |
---|---|
dcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
dcbii | ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | dcbiit 839 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (DECID 𝜑 ↔ DECID 𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 DECID wdc 834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-dc 835 |
This theorem is referenced by: dcbi 936 dcned 2353 dfrex2dc 2468 euxfr2dc 2923 exmidexmid 4197 pw1fin 6910 dcfi 6980 elnn0dc 9611 elnndc 9612 exfzdc 10240 fprod1p 11607 nnwosdc 12040 prmdc 12130 pclemdc 12288 nninfdclemcl 12449 nninfdclemp1 12451 nninfsellemdc 14762 |
Copyright terms: Public domain | W3C validator |