![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dcbii | GIF version |
Description: The equivalent of a decidable proposition is decidable. (Contributed by Jim Kingdon, 28-Mar-2018.) |
Ref | Expression |
---|---|
dcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
dcbii | ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | notbii 629 | . . 3 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
3 | 1, 2 | orbi12i 716 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) ↔ (𝜓 ∨ ¬ 𝜓)) |
4 | df-dc 781 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
5 | df-dc 781 | . 2 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
6 | 3, 4, 5 | 3bitr4i 210 | 1 ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 103 ∨ wo 664 DECID wdc 780 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 |
This theorem depends on definitions: df-bi 115 df-dc 781 |
This theorem is referenced by: dcbi 882 dcned 2261 dfrex2dc 2371 euxfr2dc 2800 exmidexmid 4031 exfzdc 9647 nninfsellemdc 11857 |
Copyright terms: Public domain | W3C validator |