| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcbii | GIF version | ||
| Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
| Ref | Expression |
|---|---|
| dcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| dcbii | ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | dcbiit 844 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (DECID 𝜑 ↔ DECID 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 DECID wdc 839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-dc 840 |
| This theorem is referenced by: dcbi 942 dcned 2406 dfrex2dc 2521 euxfr2dc 2988 exmidexmid 4279 pw1fin 7068 tpfidceq 7088 dcfi 7144 elnn0dc 9802 elnndc 9803 exfzdc 10441 fprod1p 12105 bitsinv1 12468 nnwosdc 12555 prmdc 12647 pclemdc 12806 4sqlemafi 12913 4sqleminfi 12915 4sqexercise1 12916 nninfdclemcl 13014 nninfdclemp1 13016 psr1clfi 14646 nninfsellemdc 16335 |
| Copyright terms: Public domain | W3C validator |