![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dcbii | GIF version |
Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
Ref | Expression |
---|---|
dcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
dcbii | ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | dcbiit 840 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (DECID 𝜑 ↔ DECID 𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 DECID wdc 835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
This theorem depends on definitions: df-bi 117 df-dc 836 |
This theorem is referenced by: dcbi 938 dcned 2370 dfrex2dc 2485 euxfr2dc 2946 exmidexmid 4226 pw1fin 6968 dcfi 7042 elnn0dc 9679 elnndc 9680 exfzdc 10310 fprod1p 11745 nnwosdc 12179 prmdc 12271 pclemdc 12429 4sqlemafi 12536 4sqleminfi 12538 4sqexercise1 12539 nninfdclemcl 12608 nninfdclemp1 12610 nninfsellemdc 15570 |
Copyright terms: Public domain | W3C validator |