| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcbii | GIF version | ||
| Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
| Ref | Expression |
|---|---|
| dcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| dcbii | ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | dcbiit 841 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (DECID 𝜑 ↔ DECID 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 DECID wdc 836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-dc 837 |
| This theorem is referenced by: dcbi 939 dcned 2383 dfrex2dc 2498 euxfr2dc 2962 exmidexmid 4248 pw1fin 7022 tpfidceq 7042 dcfi 7098 elnn0dc 9752 elnndc 9753 exfzdc 10391 fprod1p 11985 bitsinv1 12348 nnwosdc 12435 prmdc 12527 pclemdc 12686 4sqlemafi 12793 4sqleminfi 12795 4sqexercise1 12796 nninfdclemcl 12894 nninfdclemp1 12896 psr1clfi 14525 nninfsellemdc 16088 |
| Copyright terms: Public domain | W3C validator |