ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcbii GIF version

Theorem dcbii 845
Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.)
Hypothesis
Ref Expression
dcbii.1 (𝜑𝜓)
Assertion
Ref Expression
dcbii (DECID 𝜑DECID 𝜓)

Proof of Theorem dcbii
StepHypRef Expression
1 dcbii.1 . 2 (𝜑𝜓)
2 dcbiit 844 . 2 ((𝜑𝜓) → (DECID 𝜑DECID 𝜓))
31, 2ax-mp 5 1 (DECID 𝜑DECID 𝜓)
Colors of variables: wff set class
Syntax hints:  wb 105  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840
This theorem is referenced by:  dcbi  942  dcned  2406  dfrex2dc  2521  euxfr2dc  2988  exmidexmid  4279  pw1fin  7068  tpfidceq  7088  dcfi  7144  elnn0dc  9802  elnndc  9803  exfzdc  10441  fprod1p  12105  bitsinv1  12468  nnwosdc  12555  prmdc  12647  pclemdc  12806  4sqlemafi  12913  4sqleminfi  12915  4sqexercise1  12916  nninfdclemcl  13014  nninfdclemp1  13016  psr1clfi  14646  nninfsellemdc  16335
  Copyright terms: Public domain W3C validator