| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcbii | GIF version | ||
| Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
| Ref | Expression |
|---|---|
| dcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| dcbii | ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | dcbiit 840 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (DECID 𝜑 ↔ DECID 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: dcbi 938 dcned 2373 dfrex2dc 2488 euxfr2dc 2949 exmidexmid 4230 pw1fin 6980 tpfidceq 7000 dcfi 7056 elnn0dc 9704 elnndc 9705 exfzdc 10335 fprod1p 11783 bitsinv1 12146 nnwosdc 12233 prmdc 12325 pclemdc 12484 4sqlemafi 12591 4sqleminfi 12593 4sqexercise1 12594 nninfdclemcl 12692 nninfdclemp1 12694 psr1clfi 14322 nninfsellemdc 15765 |
| Copyright terms: Public domain | W3C validator |