| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcbii | GIF version | ||
| Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
| Ref | Expression |
|---|---|
| dcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| dcbii | ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | dcbiit 840 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (DECID 𝜑 ↔ DECID 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: dcbi 938 dcned 2373 dfrex2dc 2488 euxfr2dc 2949 exmidexmid 4230 pw1fin 6980 tpfidceq 7000 dcfi 7056 elnn0dc 9702 elnndc 9703 exfzdc 10333 fprod1p 11781 bitsinv1 12144 nnwosdc 12231 prmdc 12323 pclemdc 12482 4sqlemafi 12589 4sqleminfi 12591 4sqexercise1 12592 nninfdclemcl 12690 nninfdclemp1 12692 psr1clfi 14316 nninfsellemdc 15741 |
| Copyright terms: Public domain | W3C validator |