Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcbii | GIF version |
Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
Ref | Expression |
---|---|
dcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
dcbii | ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | dcbiit 829 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (DECID 𝜑 ↔ DECID 𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: dcbi 926 dcned 2341 dfrex2dc 2456 euxfr2dc 2910 exmidexmid 4174 pw1fin 6872 dcfi 6942 elnn0dc 9545 elnndc 9546 exfzdc 10171 fprod1p 11536 nnwosdc 11968 prmdc 12058 pclemdc 12216 nninfdclemcl 12377 nninfdclemp1 12379 nninfsellemdc 13850 |
Copyright terms: Public domain | W3C validator |