| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcbii | GIF version | ||
| Description: Equivalence property for decidability. Inference form. (Contributed by Jim Kingdon, 28-Mar-2018.) |
| Ref | Expression |
|---|---|
| dcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| dcbii | ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | dcbiit 840 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (DECID 𝜑 ↔ DECID 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (DECID 𝜑 ↔ DECID 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: dcbi 938 dcned 2381 dfrex2dc 2496 euxfr2dc 2957 exmidexmid 4239 pw1fin 6989 tpfidceq 7009 dcfi 7065 elnn0dc 9714 elnndc 9715 exfzdc 10350 fprod1p 11829 bitsinv1 12192 nnwosdc 12279 prmdc 12371 pclemdc 12530 4sqlemafi 12637 4sqleminfi 12639 4sqexercise1 12640 nninfdclemcl 12738 nninfdclemp1 12740 psr1clfi 14368 nninfsellemdc 15811 |
| Copyright terms: Public domain | W3C validator |