Detailed syntax breakdown of Definition df-frfor
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | | cR |
. . 3
class 𝑅 |
| 3 | | cS |
. . 3
class 𝑆 |
| 4 | 1, 2, 3 | wfrfor 4362 |
. 2
wff FrFor
𝑅𝐴𝑆 |
| 5 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 6 | 5 | cv 1363 |
. . . . . . . 8
class 𝑦 |
| 7 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 8 | 7 | cv 1363 |
. . . . . . . 8
class 𝑥 |
| 9 | 6, 8, 2 | wbr 4033 |
. . . . . . 7
wff 𝑦𝑅𝑥 |
| 10 | 6, 3 | wcel 2167 |
. . . . . . 7
wff 𝑦 ∈ 𝑆 |
| 11 | 9, 10 | wi 4 |
. . . . . 6
wff (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) |
| 12 | 11, 5, 1 | wral 2475 |
. . . . 5
wff
∀𝑦 ∈
𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) |
| 13 | 8, 3 | wcel 2167 |
. . . . 5
wff 𝑥 ∈ 𝑆 |
| 14 | 12, 13 | wi 4 |
. . . 4
wff
(∀𝑦 ∈
𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 15 | 14, 7, 1 | wral 2475 |
. . 3
wff
∀𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 16 | 1, 3 | wss 3157 |
. . 3
wff 𝐴 ⊆ 𝑆 |
| 17 | 15, 16 | wi 4 |
. 2
wff
(∀𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝐴 ⊆ 𝑆) |
| 18 | 4, 17 | wb 105 |
1
wff ( FrFor
𝑅𝐴𝑆 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝐴 ⊆ 𝑆)) |