ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frirrg GIF version

Theorem frirrg 4415
Description: A well-founded relation is irreflexive. This is the case where 𝐴 exists. (Contributed by Jim Kingdon, 21-Sep-2021.)
Assertion
Ref Expression
frirrg ((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem frirrg
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))
2 simpl3 1005 . . . 4 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → 𝐵𝐴)
31, 2sseldd 3202 . . 3 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → 𝐵 ∈ (𝐴 ∖ {𝐵}))
4 neldifsnd 3775 . . 3 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → ¬ 𝐵 ∈ (𝐴 ∖ {𝐵}))
53, 4pm2.65da 663 . 2 ((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → ¬ 𝐴 ⊆ (𝐴 ∖ {𝐵}))
6 simplr 528 . . . . . 6 (((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) → 𝑥𝐴)
7 simplr 528 . . . . . . . . . . 11 ((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) → 𝐵𝑅𝐵)
87ad2antrr 488 . . . . . . . . . 10 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵𝑅𝐵)
9 simpr 110 . . . . . . . . . 10 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
108, 9breqtrrd 4087 . . . . . . . . 9 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵𝑅𝑥)
11 breq1 4062 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦𝑅𝑥𝐵𝑅𝑥))
12 eleq1 2270 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦 ∈ (𝐴 ∖ {𝐵}) ↔ 𝐵 ∈ (𝐴 ∖ {𝐵})))
1311, 12imbi12d 234 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) ↔ (𝐵𝑅𝑥𝐵 ∈ (𝐴 ∖ {𝐵}))))
14 simplr 528 . . . . . . . . . 10 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})))
15 simpll3 1041 . . . . . . . . . . 11 ((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) → 𝐵𝐴)
1615ad2antrr 488 . . . . . . . . . 10 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵𝐴)
1713, 14, 16rspcdva 2889 . . . . . . . . 9 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝐵𝑅𝑥𝐵 ∈ (𝐴 ∖ {𝐵})))
1810, 17mpd 13 . . . . . . . 8 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴 ∖ {𝐵}))
19 neldifsnd 3775 . . . . . . . 8 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → ¬ 𝐵 ∈ (𝐴 ∖ {𝐵}))
2018, 19pm2.65da 663 . . . . . . 7 (((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) → ¬ 𝑥 = 𝐵)
21 velsn 3660 . . . . . . 7 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
2220, 21sylnibr 679 . . . . . 6 (((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) → ¬ 𝑥 ∈ {𝐵})
236, 22eldifd 3184 . . . . 5 (((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) → 𝑥 ∈ (𝐴 ∖ {𝐵}))
2423ex 115 . . . 4 ((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) → (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})))
2524ralrimiva 2581 . . 3 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) → ∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})))
26 df-frind 4397 . . . . . . . 8 (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
27 df-frfor 4396 . . . . . . . . 9 ( FrFor 𝑅𝐴𝑠 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
2827albii 1494 . . . . . . . 8 (∀𝑠 FrFor 𝑅𝐴𝑠 ↔ ∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
2926, 28bitri 184 . . . . . . 7 (𝑅 Fr 𝐴 ↔ ∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
3029biimpi 120 . . . . . 6 (𝑅 Fr 𝐴 → ∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
31303ad2ant1 1021 . . . . 5 ((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → ∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
32 difexg 4201 . . . . . . 7 (𝐴𝑉 → (𝐴 ∖ {𝐵}) ∈ V)
33 eleq2 2271 . . . . . . . . . . . . 13 (𝑠 = (𝐴 ∖ {𝐵}) → (𝑦𝑠𝑦 ∈ (𝐴 ∖ {𝐵})))
3433imbi2d 230 . . . . . . . . . . . 12 (𝑠 = (𝐴 ∖ {𝐵}) → ((𝑦𝑅𝑥𝑦𝑠) ↔ (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))))
3534ralbidv 2508 . . . . . . . . . . 11 (𝑠 = (𝐴 ∖ {𝐵}) → (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))))
36 eleq2 2271 . . . . . . . . . . 11 (𝑠 = (𝐴 ∖ {𝐵}) → (𝑥𝑠𝑥 ∈ (𝐴 ∖ {𝐵})))
3735, 36imbi12d 234 . . . . . . . . . 10 (𝑠 = (𝐴 ∖ {𝐵}) → ((∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) ↔ (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵}))))
3837ralbidv 2508 . . . . . . . . 9 (𝑠 = (𝐴 ∖ {𝐵}) → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) ↔ ∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵}))))
39 sseq2 3225 . . . . . . . . 9 (𝑠 = (𝐴 ∖ {𝐵}) → (𝐴𝑠𝐴 ⊆ (𝐴 ∖ {𝐵})))
4038, 39imbi12d 234 . . . . . . . 8 (𝑠 = (𝐴 ∖ {𝐵}) → ((∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠) ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))))
4140spcgv 2867 . . . . . . 7 ((𝐴 ∖ {𝐵}) ∈ V → (∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠) → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))))
4232, 41syl 14 . . . . . 6 (𝐴𝑉 → (∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠) → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))))
43423ad2ant2 1022 . . . . 5 ((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → (∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠) → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))))
4431, 43mpd 13 . . . 4 ((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})))
4544adantr 276 . . 3 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})))
4625, 45mpd 13 . 2 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))
475, 46mtand 667 1 ((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 981  wal 1371   = wceq 1373  wcel 2178  wral 2486  Vcvv 2776  cdif 3171  wss 3174  {csn 3643   class class class wbr 4059   FrFor wfrfor 4392   Fr wfr 4393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-frfor 4396  df-frind 4397
This theorem is referenced by:  efrirr  4418  wepo  4424  wetriext  4643
  Copyright terms: Public domain W3C validator