| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpr 110 | 
. . . 4
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})) | 
| 2 |   | simpl3 1004 | 
. . . 4
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → 𝐵 ∈ 𝐴) | 
| 3 | 1, 2 | sseldd 3184 | 
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → 𝐵 ∈ (𝐴 ∖ {𝐵})) | 
| 4 |   | neldifsnd 3753 | 
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → ¬ 𝐵 ∈ (𝐴 ∖ {𝐵})) | 
| 5 | 3, 4 | pm2.65da 662 | 
. 2
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐴 ⊆ (𝐴 ∖ {𝐵})) | 
| 6 |   | simplr 528 | 
. . . . . 6
⊢
(((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) → 𝑥 ∈ 𝐴) | 
| 7 |   | simplr 528 | 
. . . . . . . . . . 11
⊢ ((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐵𝑅𝐵) | 
| 8 | 7 | ad2antrr 488 | 
. . . . . . . . . 10
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵𝑅𝐵) | 
| 9 |   | simpr 110 | 
. . . . . . . . . 10
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | 
| 10 | 8, 9 | breqtrrd 4061 | 
. . . . . . . . 9
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵𝑅𝑥) | 
| 11 |   | breq1 4036 | 
. . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → (𝑦𝑅𝑥 ↔ 𝐵𝑅𝑥)) | 
| 12 |   | eleq1 2259 | 
. . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → (𝑦 ∈ (𝐴 ∖ {𝐵}) ↔ 𝐵 ∈ (𝐴 ∖ {𝐵}))) | 
| 13 | 11, 12 | imbi12d 234 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → ((𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) ↔ (𝐵𝑅𝑥 → 𝐵 ∈ (𝐴 ∖ {𝐵})))) | 
| 14 |   | simplr 528 | 
. . . . . . . . . 10
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) | 
| 15 |   | simpll3 1040 | 
. . . . . . . . . . 11
⊢ ((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐴) | 
| 16 | 15 | ad2antrr 488 | 
. . . . . . . . . 10
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵 ∈ 𝐴) | 
| 17 | 13, 14, 16 | rspcdva 2873 | 
. . . . . . . . 9
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → (𝐵𝑅𝑥 → 𝐵 ∈ (𝐴 ∖ {𝐵}))) | 
| 18 | 10, 17 | mpd 13 | 
. . . . . . . 8
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴 ∖ {𝐵})) | 
| 19 |   | neldifsnd 3753 | 
. . . . . . . 8
⊢
((((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → ¬ 𝐵 ∈ (𝐴 ∖ {𝐵})) | 
| 20 | 18, 19 | pm2.65da 662 | 
. . . . . . 7
⊢
(((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) → ¬ 𝑥 = 𝐵) | 
| 21 |   | velsn 3639 | 
. . . . . . 7
⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | 
| 22 | 20, 21 | sylnibr 678 | 
. . . . . 6
⊢
(((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) → ¬ 𝑥 ∈ {𝐵}) | 
| 23 | 6, 22 | eldifd 3167 | 
. . . . 5
⊢
(((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵}))) → 𝑥 ∈ (𝐴 ∖ {𝐵})) | 
| 24 | 23 | ex 115 | 
. . . 4
⊢ ((((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵}))) | 
| 25 | 24 | ralrimiva 2570 | 
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) → ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵}))) | 
| 26 |   | df-frind 4367 | 
. . . . . . . 8
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) | 
| 27 |   | df-frfor 4366 | 
. . . . . . . . 9
⊢ ( FrFor
𝑅𝐴𝑠 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠)) | 
| 28 | 27 | albii 1484 | 
. . . . . . . 8
⊢
(∀𝑠 FrFor
𝑅𝐴𝑠 ↔ ∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠)) | 
| 29 | 26, 28 | bitri 184 | 
. . . . . . 7
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠)) | 
| 30 | 29 | biimpi 120 | 
. . . . . 6
⊢ (𝑅 Fr 𝐴 → ∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠)) | 
| 31 | 30 | 3ad2ant1 1020 | 
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → ∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠)) | 
| 32 |   | difexg 4174 | 
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ {𝐵}) ∈ V) | 
| 33 |   | eleq2 2260 | 
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → (𝑦 ∈ 𝑠 ↔ 𝑦 ∈ (𝐴 ∖ {𝐵}))) | 
| 34 | 33 | imbi2d 230 | 
. . . . . . . . . . . 12
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → ((𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) ↔ (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})))) | 
| 35 | 34 | ralbidv 2497 | 
. . . . . . . . . . 11
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})))) | 
| 36 |   | eleq2 2260 | 
. . . . . . . . . . 11
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → (𝑥 ∈ 𝑠 ↔ 𝑥 ∈ (𝐴 ∖ {𝐵}))) | 
| 37 | 35, 36 | imbi12d 234 | 
. . . . . . . . . 10
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) ↔ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})))) | 
| 38 | 37 | ralbidv 2497 | 
. . . . . . . . 9
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})))) | 
| 39 |   | sseq2 3207 | 
. . . . . . . . 9
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → (𝐴 ⊆ 𝑠 ↔ 𝐴 ⊆ (𝐴 ∖ {𝐵}))) | 
| 40 | 38, 39 | imbi12d 234 | 
. . . . . . . 8
⊢ (𝑠 = (𝐴 ∖ {𝐵}) → ((∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠) ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})))) | 
| 41 | 40 | spcgv 2851 | 
. . . . . . 7
⊢ ((𝐴 ∖ {𝐵}) ∈ V → (∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠) → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})))) | 
| 42 | 32, 41 | syl 14 | 
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠) → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})))) | 
| 43 | 42 | 3ad2ant2 1021 | 
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → (∀𝑠(∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → 𝐴 ⊆ 𝑠) → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})))) | 
| 44 | 31, 43 | mpd 13 | 
. . . 4
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))) | 
| 45 | 44 | adantr 276 | 
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))) | 
| 46 | 25, 45 | mpd 13 | 
. 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵𝑅𝐵) → 𝐴 ⊆ (𝐴 ∖ {𝐵})) | 
| 47 | 5, 46 | mtand 666 | 
1
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |