| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > frforeq1 | GIF version | ||
| Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| frforeq1 | ⊢ (𝑅 = 𝑆 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑆𝐴𝑇)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq 4035 | . . . . . . 7 ⊢ (𝑅 = 𝑆 → (𝑦𝑅𝑥 ↔ 𝑦𝑆𝑥)) | |
| 2 | 1 | imbi1d 231 | . . . . . 6 ⊢ (𝑅 = 𝑆 → ((𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) ↔ (𝑦𝑆𝑥 → 𝑦 ∈ 𝑇))) | 
| 3 | 2 | ralbidv 2497 | . . . . 5 ⊢ (𝑅 = 𝑆 → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑆𝑥 → 𝑦 ∈ 𝑇))) | 
| 4 | 3 | imbi1d 231 | . . . 4 ⊢ (𝑅 = 𝑆 → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) ↔ (∀𝑦 ∈ 𝐴 (𝑦𝑆𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇))) | 
| 5 | 4 | ralbidv 2497 | . . 3 ⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑆𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇))) | 
| 6 | 5 | imbi1d 231 | . 2 ⊢ (𝑅 = 𝑆 → ((∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇) ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑆𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇))) | 
| 7 | df-frfor 4366 | . 2 ⊢ ( FrFor 𝑅𝐴𝑇 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇)) | |
| 8 | df-frfor 4366 | . 2 ⊢ ( FrFor 𝑆𝐴𝑇 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑆𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇)) | |
| 9 | 6, 7, 8 | 3bitr4g 223 | 1 ⊢ (𝑅 = 𝑆 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑆𝐴𝑇)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 class class class wbr 4033 FrFor wfrfor 4362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-ral 2480 df-br 4034 df-frfor 4366 | 
| This theorem is referenced by: freq1 4379 | 
| Copyright terms: Public domain | W3C validator |