![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frforeq1 | GIF version |
Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.) |
Ref | Expression |
---|---|
frforeq1 | ⊢ (𝑅 = 𝑆 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑆𝐴𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 3853 | . . . . . . 7 ⊢ (𝑅 = 𝑆 → (𝑦𝑅𝑥 ↔ 𝑦𝑆𝑥)) | |
2 | 1 | imbi1d 230 | . . . . . 6 ⊢ (𝑅 = 𝑆 → ((𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) ↔ (𝑦𝑆𝑥 → 𝑦 ∈ 𝑇))) |
3 | 2 | ralbidv 2381 | . . . . 5 ⊢ (𝑅 = 𝑆 → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑆𝑥 → 𝑦 ∈ 𝑇))) |
4 | 3 | imbi1d 230 | . . . 4 ⊢ (𝑅 = 𝑆 → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) ↔ (∀𝑦 ∈ 𝐴 (𝑦𝑆𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇))) |
5 | 4 | ralbidv 2381 | . . 3 ⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑆𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇))) |
6 | 5 | imbi1d 230 | . 2 ⊢ (𝑅 = 𝑆 → ((∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇) ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑆𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇))) |
7 | df-frfor 4167 | . 2 ⊢ ( FrFor 𝑅𝐴𝑇 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇)) | |
8 | df-frfor 4167 | . 2 ⊢ ( FrFor 𝑆𝐴𝑇 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑆𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇)) | |
9 | 6, 7, 8 | 3bitr4g 222 | 1 ⊢ (𝑅 = 𝑆 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑆𝐴𝑇)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1290 ∈ wcel 1439 ∀wral 2360 ⊆ wss 3000 class class class wbr 3851 FrFor wfrfor 4163 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-4 1446 ax-17 1465 ax-ial 1473 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-cleq 2082 df-clel 2085 df-ral 2365 df-br 3852 df-frfor 4167 |
This theorem is referenced by: freq1 4180 |
Copyright terms: Public domain | W3C validator |