| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nffrfor | GIF version | ||
| Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nffrfor.r | ⊢ Ⅎ𝑥𝑅 | 
| nffrfor.a | ⊢ Ⅎ𝑥𝐴 | 
| nffrfor.s | ⊢ Ⅎ𝑥𝑆 | 
| Ref | Expression | 
|---|---|
| nffrfor | ⊢ Ⅎ𝑥 FrFor 𝑅𝐴𝑆 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-frfor 4366 | . 2 ⊢ ( FrFor 𝑅𝐴𝑆 ↔ (∀𝑢 ∈ 𝐴 (∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) → 𝑢 ∈ 𝑆) → 𝐴 ⊆ 𝑆)) | |
| 2 | nffrfor.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2339 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑣 | |
| 4 | nffrfor.r | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
| 5 | nfcv 2339 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑢 | |
| 6 | 3, 4, 5 | nfbr 4079 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑣𝑅𝑢 | 
| 7 | nffrfor.s | . . . . . . . 8 ⊢ Ⅎ𝑥𝑆 | |
| 8 | 7 | nfcri 2333 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑣 ∈ 𝑆 | 
| 9 | 6, 8 | nfim 1586 | . . . . . 6 ⊢ Ⅎ𝑥(𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) | 
| 10 | 2, 9 | nfralxy 2535 | . . . . 5 ⊢ Ⅎ𝑥∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) | 
| 11 | 7 | nfcri 2333 | . . . . 5 ⊢ Ⅎ𝑥 𝑢 ∈ 𝑆 | 
| 12 | 10, 11 | nfim 1586 | . . . 4 ⊢ Ⅎ𝑥(∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) → 𝑢 ∈ 𝑆) | 
| 13 | 2, 12 | nfralxy 2535 | . . 3 ⊢ Ⅎ𝑥∀𝑢 ∈ 𝐴 (∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) → 𝑢 ∈ 𝑆) | 
| 14 | 2, 7 | nfss 3176 | . . 3 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝑆 | 
| 15 | 13, 14 | nfim 1586 | . 2 ⊢ Ⅎ𝑥(∀𝑢 ∈ 𝐴 (∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) → 𝑢 ∈ 𝑆) → 𝐴 ⊆ 𝑆) | 
| 16 | 1, 15 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥 FrFor 𝑅𝐴𝑆 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 ∀wral 2475 ⊆ wss 3157 class class class wbr 4033 FrFor wfrfor 4362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-frfor 4366 | 
| This theorem is referenced by: nffr 4384 | 
| Copyright terms: Public domain | W3C validator |