ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffrfor GIF version

Theorem nffrfor 4436
Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nffrfor.r 𝑥𝑅
nffrfor.a 𝑥𝐴
nffrfor.s 𝑥𝑆
Assertion
Ref Expression
nffrfor 𝑥 FrFor 𝑅𝐴𝑆

Proof of Theorem nffrfor
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frfor 4419 . 2 ( FrFor 𝑅𝐴𝑆 ↔ (∀𝑢𝐴 (∀𝑣𝐴 (𝑣𝑅𝑢𝑣𝑆) → 𝑢𝑆) → 𝐴𝑆))
2 nffrfor.a . . . 4 𝑥𝐴
3 nfcv 2372 . . . . . . . 8 𝑥𝑣
4 nffrfor.r . . . . . . . 8 𝑥𝑅
5 nfcv 2372 . . . . . . . 8 𝑥𝑢
63, 4, 5nfbr 4129 . . . . . . 7 𝑥 𝑣𝑅𝑢
7 nffrfor.s . . . . . . . 8 𝑥𝑆
87nfcri 2366 . . . . . . 7 𝑥 𝑣𝑆
96, 8nfim 1618 . . . . . 6 𝑥(𝑣𝑅𝑢𝑣𝑆)
102, 9nfralxy 2568 . . . . 5 𝑥𝑣𝐴 (𝑣𝑅𝑢𝑣𝑆)
117nfcri 2366 . . . . 5 𝑥 𝑢𝑆
1210, 11nfim 1618 . . . 4 𝑥(∀𝑣𝐴 (𝑣𝑅𝑢𝑣𝑆) → 𝑢𝑆)
132, 12nfralxy 2568 . . 3 𝑥𝑢𝐴 (∀𝑣𝐴 (𝑣𝑅𝑢𝑣𝑆) → 𝑢𝑆)
142, 7nfss 3217 . . 3 𝑥 𝐴𝑆
1513, 14nfim 1618 . 2 𝑥(∀𝑢𝐴 (∀𝑣𝐴 (𝑣𝑅𝑢𝑣𝑆) → 𝑢𝑆) → 𝐴𝑆)
161, 15nfxfr 1520 1 𝑥 FrFor 𝑅𝐴𝑆
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1506  wcel 2200  wnfc 2359  wral 2508  wss 3197   class class class wbr 4082   FrFor wfrfor 4415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-frfor 4419
This theorem is referenced by:  nffr  4437
  Copyright terms: Public domain W3C validator