| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffrfor | GIF version | ||
| Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffrfor.r | ⊢ Ⅎ𝑥𝑅 |
| nffrfor.a | ⊢ Ⅎ𝑥𝐴 |
| nffrfor.s | ⊢ Ⅎ𝑥𝑆 |
| Ref | Expression |
|---|---|
| nffrfor | ⊢ Ⅎ𝑥 FrFor 𝑅𝐴𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frfor 4383 | . 2 ⊢ ( FrFor 𝑅𝐴𝑆 ↔ (∀𝑢 ∈ 𝐴 (∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) → 𝑢 ∈ 𝑆) → 𝐴 ⊆ 𝑆)) | |
| 2 | nffrfor.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2349 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑣 | |
| 4 | nffrfor.r | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
| 5 | nfcv 2349 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑢 | |
| 6 | 3, 4, 5 | nfbr 4095 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑣𝑅𝑢 |
| 7 | nffrfor.s | . . . . . . . 8 ⊢ Ⅎ𝑥𝑆 | |
| 8 | 7 | nfcri 2343 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑣 ∈ 𝑆 |
| 9 | 6, 8 | nfim 1596 | . . . . . 6 ⊢ Ⅎ𝑥(𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) |
| 10 | 2, 9 | nfralxy 2545 | . . . . 5 ⊢ Ⅎ𝑥∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) |
| 11 | 7 | nfcri 2343 | . . . . 5 ⊢ Ⅎ𝑥 𝑢 ∈ 𝑆 |
| 12 | 10, 11 | nfim 1596 | . . . 4 ⊢ Ⅎ𝑥(∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) → 𝑢 ∈ 𝑆) |
| 13 | 2, 12 | nfralxy 2545 | . . 3 ⊢ Ⅎ𝑥∀𝑢 ∈ 𝐴 (∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) → 𝑢 ∈ 𝑆) |
| 14 | 2, 7 | nfss 3188 | . . 3 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝑆 |
| 15 | 13, 14 | nfim 1596 | . 2 ⊢ Ⅎ𝑥(∀𝑢 ∈ 𝐴 (∀𝑣 ∈ 𝐴 (𝑣𝑅𝑢 → 𝑣 ∈ 𝑆) → 𝑢 ∈ 𝑆) → 𝐴 ⊆ 𝑆) |
| 16 | 1, 15 | nfxfr 1498 | 1 ⊢ Ⅎ𝑥 FrFor 𝑅𝐴𝑆 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1484 ∈ wcel 2177 Ⅎwnfc 2336 ∀wral 2485 ⊆ wss 3168 class class class wbr 4048 FrFor wfrfor 4379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-frfor 4383 |
| This theorem is referenced by: nffr 4401 |
| Copyright terms: Public domain | W3C validator |