![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frforeq2 | GIF version |
Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.) |
Ref | Expression |
---|---|
frforeq2 | ⊢ (𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑅𝐵𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2690 | . . . . 5 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) ↔ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇))) | |
2 | 1 | imbi1d 231 | . . . 4 ⊢ (𝐴 = 𝐵 → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) ↔ (∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇))) |
3 | 2 | raleqbi1dv 2702 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇))) |
4 | sseq1 3202 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝑇 ↔ 𝐵 ⊆ 𝑇)) | |
5 | 3, 4 | imbi12d 234 | . 2 ⊢ (𝐴 = 𝐵 → ((∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇) ↔ (∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐵 ⊆ 𝑇))) |
6 | df-frfor 4362 | . 2 ⊢ ( FrFor 𝑅𝐴𝑇 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇)) | |
7 | df-frfor 4362 | . 2 ⊢ ( FrFor 𝑅𝐵𝑇 ↔ (∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐵 ⊆ 𝑇)) | |
8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑅𝐵𝑇)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 class class class wbr 4029 FrFor wfrfor 4358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-in 3159 df-ss 3166 df-frfor 4362 |
This theorem is referenced by: freq2 4377 |
Copyright terms: Public domain | W3C validator |