| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frforeq2 | GIF version | ||
| Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.) |
| Ref | Expression |
|---|---|
| frforeq2 | ⊢ (𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑅𝐵𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 2705 | . . . . 5 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) ↔ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇))) | |
| 2 | 1 | imbi1d 231 | . . . 4 ⊢ (𝐴 = 𝐵 → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) ↔ (∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇))) |
| 3 | 2 | raleqbi1dv 2717 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇))) |
| 4 | sseq1 3224 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝑇 ↔ 𝐵 ⊆ 𝑇)) | |
| 5 | 3, 4 | imbi12d 234 | . 2 ⊢ (𝐴 = 𝐵 → ((∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇) ↔ (∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐵 ⊆ 𝑇))) |
| 6 | df-frfor 4396 | . 2 ⊢ ( FrFor 𝑅𝐴𝑇 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇)) | |
| 7 | df-frfor 4396 | . 2 ⊢ ( FrFor 𝑅𝐵𝑇 ↔ (∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐵 ⊆ 𝑇)) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑅𝐵𝑇)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∀wral 2486 ⊆ wss 3174 class class class wbr 4059 FrFor wfrfor 4392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-in 3180 df-ss 3187 df-frfor 4396 |
| This theorem is referenced by: freq2 4411 |
| Copyright terms: Public domain | W3C validator |