ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frforeq2 GIF version

Theorem frforeq2 4410
Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
Assertion
Ref Expression
frforeq2 (𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑅𝐵𝑇))

Proof of Theorem frforeq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2705 . . . . 5 (𝐴 = 𝐵 → (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) ↔ ∀𝑦𝐵 (𝑦𝑅𝑥𝑦𝑇)))
21imbi1d 231 . . . 4 (𝐴 = 𝐵 → ((∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) ↔ (∀𝑦𝐵 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇)))
32raleqbi1dv 2717 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) ↔ ∀𝑥𝐵 (∀𝑦𝐵 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇)))
4 sseq1 3224 . . 3 (𝐴 = 𝐵 → (𝐴𝑇𝐵𝑇))
53, 4imbi12d 234 . 2 (𝐴 = 𝐵 → ((∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) → 𝐴𝑇) ↔ (∀𝑥𝐵 (∀𝑦𝐵 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) → 𝐵𝑇)))
6 df-frfor 4396 . 2 ( FrFor 𝑅𝐴𝑇 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) → 𝐴𝑇))
7 df-frfor 4396 . 2 ( FrFor 𝑅𝐵𝑇 ↔ (∀𝑥𝐵 (∀𝑦𝐵 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) → 𝐵𝑇))
85, 6, 73bitr4g 223 1 (𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑅𝐵𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2178  wral 2486  wss 3174   class class class wbr 4059   FrFor wfrfor 4392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-in 3180  df-ss 3187  df-frfor 4396
This theorem is referenced by:  freq2  4411
  Copyright terms: Public domain W3C validator