ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frforeq3 GIF version

Theorem frforeq3 4438
Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
Assertion
Ref Expression
frforeq3 (𝑆 = 𝑇 → ( FrFor 𝑅𝐴𝑆 ↔ FrFor 𝑅𝐴𝑇))

Proof of Theorem frforeq3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2293 . . . . . . 7 (𝑆 = 𝑇 → (𝑦𝑆𝑦𝑇))
21imbi2d 230 . . . . . 6 (𝑆 = 𝑇 → ((𝑦𝑅𝑥𝑦𝑆) ↔ (𝑦𝑅𝑥𝑦𝑇)))
32ralbidv 2530 . . . . 5 (𝑆 = 𝑇 → (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑆) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇)))
4 eleq2 2293 . . . . 5 (𝑆 = 𝑇 → (𝑥𝑆𝑥𝑇))
53, 4imbi12d 234 . . . 4 (𝑆 = 𝑇 → ((∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑆) → 𝑥𝑆) ↔ (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇)))
65ralbidv 2530 . . 3 (𝑆 = 𝑇 → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑆) → 𝑥𝑆) ↔ ∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇)))
7 sseq2 3248 . . 3 (𝑆 = 𝑇 → (𝐴𝑆𝐴𝑇))
86, 7imbi12d 234 . 2 (𝑆 = 𝑇 → ((∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑆) → 𝑥𝑆) → 𝐴𝑆) ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) → 𝐴𝑇)))
9 df-frfor 4422 . 2 ( FrFor 𝑅𝐴𝑆 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑆) → 𝑥𝑆) → 𝐴𝑆))
10 df-frfor 4422 . 2 ( FrFor 𝑅𝐴𝑇 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) → 𝐴𝑇))
118, 9, 103bitr4g 223 1 (𝑆 = 𝑇 → ( FrFor 𝑅𝐴𝑆 ↔ FrFor 𝑅𝐴𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  wral 2508  wss 3197   class class class wbr 4083   FrFor wfrfor 4418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-in 3203  df-ss 3210  df-frfor 4422
This theorem is referenced by:  frind  4443
  Copyright terms: Public domain W3C validator