| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frforeq3 | GIF version | ||
| Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.) |
| Ref | Expression |
|---|---|
| frforeq3 | ⊢ (𝑆 = 𝑇 → ( FrFor 𝑅𝐴𝑆 ↔ FrFor 𝑅𝐴𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 | . . . . . . 7 ⊢ (𝑆 = 𝑇 → (𝑦 ∈ 𝑆 ↔ 𝑦 ∈ 𝑇)) | |
| 2 | 1 | imbi2d 230 | . . . . . 6 ⊢ (𝑆 = 𝑇 → ((𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) ↔ (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇))) |
| 3 | 2 | ralbidv 2506 | . . . . 5 ⊢ (𝑆 = 𝑇 → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇))) |
| 4 | eleq2 2269 | . . . . 5 ⊢ (𝑆 = 𝑇 → (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ 𝑇)) | |
| 5 | 3, 4 | imbi12d 234 | . . . 4 ⊢ (𝑆 = 𝑇 → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) ↔ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇))) |
| 6 | 5 | ralbidv 2506 | . . 3 ⊢ (𝑆 = 𝑇 → (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇))) |
| 7 | sseq2 3217 | . . 3 ⊢ (𝑆 = 𝑇 → (𝐴 ⊆ 𝑆 ↔ 𝐴 ⊆ 𝑇)) | |
| 8 | 6, 7 | imbi12d 234 | . 2 ⊢ (𝑆 = 𝑇 → ((∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝐴 ⊆ 𝑆) ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇))) |
| 9 | df-frfor 4378 | . 2 ⊢ ( FrFor 𝑅𝐴𝑆 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) → 𝐴 ⊆ 𝑆)) | |
| 10 | df-frfor 4378 | . 2 ⊢ ( FrFor 𝑅𝐴𝑇 ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝑦 ∈ 𝑇) → 𝑥 ∈ 𝑇) → 𝐴 ⊆ 𝑇)) | |
| 11 | 8, 9, 10 | 3bitr4g 223 | 1 ⊢ (𝑆 = 𝑇 → ( FrFor 𝑅𝐴𝑆 ↔ FrFor 𝑅𝐴𝑇)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∀wral 2484 ⊆ wss 3166 class class class wbr 4044 FrFor wfrfor 4374 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-in 3172 df-ss 3179 df-frfor 4378 |
| This theorem is referenced by: frind 4399 |
| Copyright terms: Public domain | W3C validator |