| Step | Hyp | Ref
| Expression |
| 1 | | frind.ind |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝜓) → 𝜑)) |
| 2 | 1 | ralrimiva 2570 |
. . . . . . 7
⊢ (𝜒 → ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝜓) → 𝜑)) |
| 3 | | nfv 1542 |
. . . . . . . 8
⊢
Ⅎ𝑧(∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝜓) → 𝜑) |
| 4 | | nfv 1542 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) |
| 5 | | nfs1v 1958 |
. . . . . . . . 9
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
| 6 | 4, 5 | nfim 1586 |
. . . . . . . 8
⊢
Ⅎ𝑥(∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) → [𝑧 / 𝑥]𝜑) |
| 7 | | breq2 4037 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑧)) |
| 8 | 7 | imbi1d 231 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑦𝑅𝑥 → 𝜓) ↔ (𝑦𝑅𝑧 → 𝜓))) |
| 9 | 8 | ralbidv 2497 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝜓) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓))) |
| 10 | | sbequ12 1785 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 11 | 9, 10 | imbi12d 234 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝜓) → 𝜑) ↔ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) → [𝑧 / 𝑥]𝜑))) |
| 12 | 3, 6, 11 | cbvral 2725 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝜓) → 𝜑) ↔ ∀𝑧 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) → [𝑧 / 𝑥]𝜑)) |
| 13 | 2, 12 | sylib 122 |
. . . . . 6
⊢ (𝜒 → ∀𝑧 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) → [𝑧 / 𝑥]𝜑)) |
| 14 | | frind.sb |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 15 | 14 | elrab3 2921 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐴 → (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝜓)) |
| 16 | 15 | imbi2d 230 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 → ((𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) ↔ (𝑦𝑅𝑧 → 𝜓))) |
| 17 | 16 | ralbiia 2511 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓)) |
| 18 | 17 | a1i 9 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓))) |
| 19 | | nfcv 2339 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑧 |
| 20 | | nfcv 2339 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝐴 |
| 21 | 19, 20, 5, 10 | elrabf 2918 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) |
| 22 | 21 | baib 920 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐴 → (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑)) |
| 23 | 18, 22 | imbi12d 234 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) ↔ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) → [𝑧 / 𝑥]𝜑))) |
| 24 | 23 | ralbiia 2511 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) ↔ ∀𝑧 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) → [𝑧 / 𝑥]𝜑)) |
| 25 | 13, 24 | sylibr 134 |
. . . . 5
⊢ (𝜒 → ∀𝑧 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
| 26 | | frind.fr |
. . . . . . . 8
⊢ (𝜒 → 𝑅 Fr 𝐴) |
| 27 | | df-frind 4367 |
. . . . . . . 8
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) |
| 28 | 26, 27 | sylib 122 |
. . . . . . 7
⊢ (𝜒 → ∀𝑠 FrFor 𝑅𝐴𝑠) |
| 29 | | frind.a |
. . . . . . . 8
⊢ (𝜒 → 𝐴 ∈ 𝑉) |
| 30 | | rabexg 4176 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
| 31 | | frforeq3 4382 |
. . . . . . . . 9
⊢ (𝑠 = {𝑥 ∈ 𝐴 ∣ 𝜑} → ( FrFor 𝑅𝐴𝑠 ↔ FrFor 𝑅𝐴{𝑥 ∈ 𝐴 ∣ 𝜑})) |
| 32 | 31 | spcgv 2851 |
. . . . . . . 8
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V → (∀𝑠 FrFor 𝑅𝐴𝑠 → FrFor 𝑅𝐴{𝑥 ∈ 𝐴 ∣ 𝜑})) |
| 33 | 29, 30, 32 | 3syl 17 |
. . . . . . 7
⊢ (𝜒 → (∀𝑠 FrFor 𝑅𝐴𝑠 → FrFor 𝑅𝐴{𝑥 ∈ 𝐴 ∣ 𝜑})) |
| 34 | 28, 33 | mpd 13 |
. . . . . 6
⊢ (𝜒 → FrFor 𝑅𝐴{𝑥 ∈ 𝐴 ∣ 𝜑}) |
| 35 | | df-frfor 4366 |
. . . . . 6
⊢ ( FrFor
𝑅𝐴{𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (∀𝑧 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
| 36 | 34, 35 | sylib 122 |
. . . . 5
⊢ (𝜒 → (∀𝑧 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
| 37 | 25, 36 | mpd 13 |
. . . 4
⊢ (𝜒 → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| 38 | | ssrab 3261 |
. . . 4
⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜑)) |
| 39 | 37, 38 | sylib 122 |
. . 3
⊢ (𝜒 → (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜑)) |
| 40 | 39 | simprd 114 |
. 2
⊢ (𝜒 → ∀𝑥 ∈ 𝐴 𝜑) |
| 41 | 40 | r19.21bi 2585 |
1
⊢ ((𝜒 ∧ 𝑥 ∈ 𝐴) → 𝜑) |