Step | Hyp | Ref
| Expression |
1 | | frind.ind |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝜓) → 𝜑)) |
2 | 1 | ralrimiva 2539 |
. . . . . . 7
⊢ (𝜒 → ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝜓) → 𝜑)) |
3 | | nfv 1516 |
. . . . . . . 8
⊢
Ⅎ𝑧(∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝜓) → 𝜑) |
4 | | nfv 1516 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) |
5 | | nfs1v 1927 |
. . . . . . . . 9
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
6 | 4, 5 | nfim 1560 |
. . . . . . . 8
⊢
Ⅎ𝑥(∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) → [𝑧 / 𝑥]𝜑) |
7 | | breq2 3986 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝑧)) |
8 | 7 | imbi1d 230 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑦𝑅𝑥 → 𝜓) ↔ (𝑦𝑅𝑧 → 𝜓))) |
9 | 8 | ralbidv 2466 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝜓) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓))) |
10 | | sbequ12 1759 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
11 | 9, 10 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝜓) → 𝜑) ↔ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) → [𝑧 / 𝑥]𝜑))) |
12 | 3, 6, 11 | cbvral 2688 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → 𝜓) → 𝜑) ↔ ∀𝑧 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) → [𝑧 / 𝑥]𝜑)) |
13 | 2, 12 | sylib 121 |
. . . . . 6
⊢ (𝜒 → ∀𝑧 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) → [𝑧 / 𝑥]𝜑)) |
14 | | frind.sb |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
15 | 14 | elrab3 2883 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐴 → (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝜓)) |
16 | 15 | imbi2d 229 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 → ((𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) ↔ (𝑦𝑅𝑧 → 𝜓))) |
17 | 16 | ralbiia 2480 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓)) |
18 | 17 | a1i 9 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓))) |
19 | | nfcv 2308 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑧 |
20 | | nfcv 2308 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝐴 |
21 | 19, 20, 5, 10 | elrabf 2880 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) |
22 | 21 | baib 909 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐴 → (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑)) |
23 | 18, 22 | imbi12d 233 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → ((∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) ↔ (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) → [𝑧 / 𝑥]𝜑))) |
24 | 23 | ralbiia 2480 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) ↔ ∀𝑧 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝜓) → [𝑧 / 𝑥]𝜑)) |
25 | 13, 24 | sylibr 133 |
. . . . 5
⊢ (𝜒 → ∀𝑧 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
26 | | frind.fr |
. . . . . . . 8
⊢ (𝜒 → 𝑅 Fr 𝐴) |
27 | | df-frind 4310 |
. . . . . . . 8
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) |
28 | 26, 27 | sylib 121 |
. . . . . . 7
⊢ (𝜒 → ∀𝑠 FrFor 𝑅𝐴𝑠) |
29 | | frind.a |
. . . . . . . 8
⊢ (𝜒 → 𝐴 ∈ 𝑉) |
30 | | rabexg 4125 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
31 | | frforeq3 4325 |
. . . . . . . . 9
⊢ (𝑠 = {𝑥 ∈ 𝐴 ∣ 𝜑} → ( FrFor 𝑅𝐴𝑠 ↔ FrFor 𝑅𝐴{𝑥 ∈ 𝐴 ∣ 𝜑})) |
32 | 31 | spcgv 2813 |
. . . . . . . 8
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V → (∀𝑠 FrFor 𝑅𝐴𝑠 → FrFor 𝑅𝐴{𝑥 ∈ 𝐴 ∣ 𝜑})) |
33 | 29, 30, 32 | 3syl 17 |
. . . . . . 7
⊢ (𝜒 → (∀𝑠 FrFor 𝑅𝐴𝑠 → FrFor 𝑅𝐴{𝑥 ∈ 𝐴 ∣ 𝜑})) |
34 | 28, 33 | mpd 13 |
. . . . . 6
⊢ (𝜒 → FrFor 𝑅𝐴{𝑥 ∈ 𝐴 ∣ 𝜑}) |
35 | | df-frfor 4309 |
. . . . . 6
⊢ ( FrFor
𝑅𝐴{𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (∀𝑧 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
36 | 34, 35 | sylib 121 |
. . . . 5
⊢ (𝜒 → (∀𝑧 ∈ 𝐴 (∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
37 | 25, 36 | mpd 13 |
. . . 4
⊢ (𝜒 → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
38 | | ssrab 3220 |
. . . 4
⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜑)) |
39 | 37, 38 | sylib 121 |
. . 3
⊢ (𝜒 → (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜑)) |
40 | 39 | simprd 113 |
. 2
⊢ (𝜒 → ∀𝑥 ∈ 𝐴 𝜑) |
41 | 40 | r19.21bi 2554 |
1
⊢ ((𝜒 ∧ 𝑥 ∈ 𝐴) → 𝜑) |