Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fr0 | GIF version |
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
fr0 | ⊢ 𝑅 Fr ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frind 4317 | . 2 ⊢ (𝑅 Fr ∅ ↔ ∀𝑠 FrFor 𝑅∅𝑠) | |
2 | 0ss 3453 | . . . 4 ⊢ ∅ ⊆ 𝑠 | |
3 | 2 | a1i 9 | . . 3 ⊢ (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → ∅ ⊆ 𝑠) |
4 | df-frfor 4316 | . . 3 ⊢ ( FrFor 𝑅∅𝑠 ↔ (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → ∅ ⊆ 𝑠)) | |
5 | 3, 4 | mpbir 145 | . 2 ⊢ FrFor 𝑅∅𝑠 |
6 | 1, 5 | mpgbir 1446 | 1 ⊢ 𝑅 Fr ∅ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wral 2448 ⊆ wss 3121 ∅c0 3414 class class class wbr 3989 FrFor wfrfor 4312 Fr wfr 4313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-frfor 4316 df-frind 4317 |
This theorem is referenced by: we0 4346 |
Copyright terms: Public domain | W3C validator |