| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fr0 | GIF version | ||
| Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| fr0 | ⊢ 𝑅 Fr ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frind 4397 | . 2 ⊢ (𝑅 Fr ∅ ↔ ∀𝑠 FrFor 𝑅∅𝑠) | |
| 2 | 0ss 3507 | . . . 4 ⊢ ∅ ⊆ 𝑠 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → ∅ ⊆ 𝑠) |
| 4 | df-frfor 4396 | . . 3 ⊢ ( FrFor 𝑅∅𝑠 ↔ (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → ∅ ⊆ 𝑠)) | |
| 5 | 3, 4 | mpbir 146 | . 2 ⊢ FrFor 𝑅∅𝑠 |
| 6 | 1, 5 | mpgbir 1477 | 1 ⊢ 𝑅 Fr ∅ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wral 2486 ⊆ wss 3174 ∅c0 3468 class class class wbr 4059 FrFor wfrfor 4392 Fr wfr 4393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 df-frfor 4396 df-frind 4397 |
| This theorem is referenced by: we0 4426 |
| Copyright terms: Public domain | W3C validator |