![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fr0 | GIF version |
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
fr0 | ⊢ 𝑅 Fr ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frind 4363 | . 2 ⊢ (𝑅 Fr ∅ ↔ ∀𝑠 FrFor 𝑅∅𝑠) | |
2 | 0ss 3485 | . . . 4 ⊢ ∅ ⊆ 𝑠 | |
3 | 2 | a1i 9 | . . 3 ⊢ (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → ∅ ⊆ 𝑠) |
4 | df-frfor 4362 | . . 3 ⊢ ( FrFor 𝑅∅𝑠 ↔ (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → ∅ ⊆ 𝑠)) | |
5 | 3, 4 | mpbir 146 | . 2 ⊢ FrFor 𝑅∅𝑠 |
6 | 1, 5 | mpgbir 1464 | 1 ⊢ 𝑅 Fr ∅ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wral 2472 ⊆ wss 3153 ∅c0 3446 class class class wbr 4029 FrFor wfrfor 4358 Fr wfr 4359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 df-frfor 4362 df-frind 4363 |
This theorem is referenced by: we0 4392 |
Copyright terms: Public domain | W3C validator |