ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fr0 GIF version

Theorem fr0 4382
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
fr0 𝑅 Fr ∅

Proof of Theorem fr0
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4363 . 2 (𝑅 Fr ∅ ↔ ∀𝑠 FrFor 𝑅𝑠)
2 0ss 3485 . . . 4 ∅ ⊆ 𝑠
32a1i 9 . . 3 (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → ∅ ⊆ 𝑠)
4 df-frfor 4362 . . 3 ( FrFor 𝑅𝑠 ↔ (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → ∅ ⊆ 𝑠))
53, 4mpbir 146 . 2 FrFor 𝑅𝑠
61, 5mpgbir 1464 1 𝑅 Fr ∅
Colors of variables: wff set class
Syntax hints:  wi 4  wral 2472  wss 3153  c0 3446   class class class wbr 4029   FrFor wfrfor 4358   Fr wfr 4359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-frfor 4362  df-frind 4363
This theorem is referenced by:  we0  4392
  Copyright terms: Public domain W3C validator