ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fr0 GIF version

Theorem fr0 4336
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
fr0 𝑅 Fr ∅

Proof of Theorem fr0
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4317 . 2 (𝑅 Fr ∅ ↔ ∀𝑠 FrFor 𝑅𝑠)
2 0ss 3453 . . . 4 ∅ ⊆ 𝑠
32a1i 9 . . 3 (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → ∅ ⊆ 𝑠)
4 df-frfor 4316 . . 3 ( FrFor 𝑅𝑠 ↔ (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → ∅ ⊆ 𝑠))
53, 4mpbir 145 . 2 FrFor 𝑅𝑠
61, 5mpgbir 1446 1 𝑅 Fr ∅
Colors of variables: wff set class
Syntax hints:  wi 4  wral 2448  wss 3121  c0 3414   class class class wbr 3989   FrFor wfrfor 4312   Fr wfr 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-frfor 4316  df-frind 4317
This theorem is referenced by:  we0  4346
  Copyright terms: Public domain W3C validator