![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fr0 | GIF version |
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
fr0 | ⊢ 𝑅 Fr ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frind 4192 | . 2 ⊢ (𝑅 Fr ∅ ↔ ∀𝑠 FrFor 𝑅∅𝑠) | |
2 | 0ss 3348 | . . . 4 ⊢ ∅ ⊆ 𝑠 | |
3 | 2 | a1i 9 | . . 3 ⊢ (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → ∅ ⊆ 𝑠) |
4 | df-frfor 4191 | . . 3 ⊢ ( FrFor 𝑅∅𝑠 ↔ (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → ∅ ⊆ 𝑠)) | |
5 | 3, 4 | mpbir 145 | . 2 ⊢ FrFor 𝑅∅𝑠 |
6 | 1, 5 | mpgbir 1397 | 1 ⊢ 𝑅 Fr ∅ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wral 2375 ⊆ wss 3021 ∅c0 3310 class class class wbr 3875 FrFor wfrfor 4187 Fr wfr 4188 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-dif 3023 df-in 3027 df-ss 3034 df-nul 3311 df-frfor 4191 df-frind 4192 |
This theorem is referenced by: we0 4221 |
Copyright terms: Public domain | W3C validator |