ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fr0 GIF version

Theorem fr0 4323
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
fr0 𝑅 Fr ∅

Proof of Theorem fr0
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4304 . 2 (𝑅 Fr ∅ ↔ ∀𝑠 FrFor 𝑅𝑠)
2 0ss 3442 . . . 4 ∅ ⊆ 𝑠
32a1i 9 . . 3 (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → ∅ ⊆ 𝑠)
4 df-frfor 4303 . . 3 ( FrFor 𝑅𝑠 ↔ (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → ∅ ⊆ 𝑠))
53, 4mpbir 145 . 2 FrFor 𝑅𝑠
61, 5mpgbir 1440 1 𝑅 Fr ∅
Colors of variables: wff set class
Syntax hints:  wi 4  wral 2442  wss 3111  c0 3404   class class class wbr 3976   FrFor wfrfor 4299   Fr wfr 4300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2723  df-dif 3113  df-in 3117  df-ss 3124  df-nul 3405  df-frfor 4303  df-frind 4304
This theorem is referenced by:  we0  4333
  Copyright terms: Public domain W3C validator