| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fr0 | GIF version | ||
| Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| fr0 | ⊢ 𝑅 Fr ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frind 4367 | . 2 ⊢ (𝑅 Fr ∅ ↔ ∀𝑠 FrFor 𝑅∅𝑠) | |
| 2 | 0ss 3489 | . . . 4 ⊢ ∅ ⊆ 𝑠 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → ∅ ⊆ 𝑠) |
| 4 | df-frfor 4366 | . . 3 ⊢ ( FrFor 𝑅∅𝑠 ↔ (∀𝑥 ∈ ∅ (∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → 𝑦 ∈ 𝑠) → 𝑥 ∈ 𝑠) → ∅ ⊆ 𝑠)) | |
| 5 | 3, 4 | mpbir 146 | . 2 ⊢ FrFor 𝑅∅𝑠 |
| 6 | 1, 5 | mpgbir 1467 | 1 ⊢ 𝑅 Fr ∅ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wral 2475 ⊆ wss 3157 ∅c0 3450 class class class wbr 4033 FrFor wfrfor 4362 Fr wfr 4363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-frfor 4366 df-frind 4367 |
| This theorem is referenced by: we0 4396 |
| Copyright terms: Public domain | W3C validator |