Detailed syntax breakdown of Definition df-po
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | | cR |
. . 3
class 𝑅 |
3 | 1, 2 | wpo 4279 |
. 2
wff 𝑅 Po 𝐴 |
4 | | vx |
. . . . . . . . 9
setvar 𝑥 |
5 | 4 | cv 1347 |
. . . . . . . 8
class 𝑥 |
6 | 5, 5, 2 | wbr 3989 |
. . . . . . 7
wff 𝑥𝑅𝑥 |
7 | 6 | wn 3 |
. . . . . 6
wff ¬
𝑥𝑅𝑥 |
8 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
9 | 8 | cv 1347 |
. . . . . . . . 9
class 𝑦 |
10 | 5, 9, 2 | wbr 3989 |
. . . . . . . 8
wff 𝑥𝑅𝑦 |
11 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
12 | 11 | cv 1347 |
. . . . . . . . 9
class 𝑧 |
13 | 9, 12, 2 | wbr 3989 |
. . . . . . . 8
wff 𝑦𝑅𝑧 |
14 | 10, 13 | wa 103 |
. . . . . . 7
wff (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) |
15 | 5, 12, 2 | wbr 3989 |
. . . . . . 7
wff 𝑥𝑅𝑧 |
16 | 14, 15 | wi 4 |
. . . . . 6
wff ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) |
17 | 7, 16 | wa 103 |
. . . . 5
wff (¬
𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
18 | 17, 11, 1 | wral 2448 |
. . . 4
wff
∀𝑧 ∈
𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
19 | 18, 8, 1 | wral 2448 |
. . 3
wff
∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
20 | 19, 4, 1 | wral 2448 |
. 2
wff
∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
21 | 3, 20 | wb 104 |
1
wff (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |