Detailed syntax breakdown of Definition df-po
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cA | 
. . 3
class 𝐴 | 
| 2 |   | cR | 
. . 3
class 𝑅 | 
| 3 | 1, 2 | wpo 4329 | 
. 2
wff 𝑅 Po 𝐴 | 
| 4 |   | vx | 
. . . . . . . . 9
setvar 𝑥 | 
| 5 | 4 | cv 1363 | 
. . . . . . . 8
class 𝑥 | 
| 6 | 5, 5, 2 | wbr 4033 | 
. . . . . . 7
wff 𝑥𝑅𝑥 | 
| 7 | 6 | wn 3 | 
. . . . . 6
wff  ¬
𝑥𝑅𝑥 | 
| 8 |   | vy | 
. . . . . . . . . 10
setvar 𝑦 | 
| 9 | 8 | cv 1363 | 
. . . . . . . . 9
class 𝑦 | 
| 10 | 5, 9, 2 | wbr 4033 | 
. . . . . . . 8
wff 𝑥𝑅𝑦 | 
| 11 |   | vz | 
. . . . . . . . . 10
setvar 𝑧 | 
| 12 | 11 | cv 1363 | 
. . . . . . . . 9
class 𝑧 | 
| 13 | 9, 12, 2 | wbr 4033 | 
. . . . . . . 8
wff 𝑦𝑅𝑧 | 
| 14 | 10, 13 | wa 104 | 
. . . . . . 7
wff (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) | 
| 15 | 5, 12, 2 | wbr 4033 | 
. . . . . . 7
wff 𝑥𝑅𝑧 | 
| 16 | 14, 15 | wi 4 | 
. . . . . 6
wff ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) | 
| 17 | 7, 16 | wa 104 | 
. . . . 5
wff (¬
𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 18 | 17, 11, 1 | wral 2475 | 
. . . 4
wff
∀𝑧 ∈
𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 19 | 18, 8, 1 | wral 2475 | 
. . 3
wff
∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 20 | 19, 4, 1 | wral 2475 | 
. 2
wff
∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 21 | 3, 20 | wb 105 | 
1
wff (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |