ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poss GIF version

Theorem poss 4271
Description: Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
poss (𝐴𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))

Proof of Theorem poss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3202 . . 3 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐵𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑥𝐴𝑦𝐵𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
2 ssralv 3202 . . . . 5 (𝐴𝐵 → (∀𝑦𝐵𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑦𝐴𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
3 ssralv 3202 . . . . . 6 (𝐴𝐵 → (∀𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
43ralimdv 2532 . . . . 5 (𝐴𝐵 → (∀𝑦𝐴𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
52, 4syld 45 . . . 4 (𝐴𝐵 → (∀𝑦𝐵𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
65ralimdv 2532 . . 3 (𝐴𝐵 → (∀𝑥𝐴𝑦𝐵𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
71, 6syld 45 . 2 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐵𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
8 df-po 4269 . 2 (𝑅 Po 𝐵 ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
9 df-po 4269 . 2 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
107, 8, 93imtr4g 204 1 (𝐴𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wral 2442  wss 3112   class class class wbr 3977   Po wpo 4267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-11 1493  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-ral 2447  df-in 3118  df-ss 3125  df-po 4269
This theorem is referenced by:  poeq2  4273  soss  4287  fimaxq  10730
  Copyright terms: Public domain W3C validator