ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isopolem GIF version

Theorem isopolem 5801
Description: Lemma for isopo 5802. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
isopolem (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵𝑅 Po 𝐴))

Proof of Theorem isopolem
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5786 . . . . . . . . . . 11 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
2 f1of 5442 . . . . . . . . . . 11 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
3 ffvelrn 5629 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑑𝐴) → (𝐻𝑑) ∈ 𝐵)
43ex 114 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑑𝐴 → (𝐻𝑑) ∈ 𝐵))
5 ffvelrn 5629 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑒𝐴) → (𝐻𝑒) ∈ 𝐵)
65ex 114 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑒𝐴 → (𝐻𝑒) ∈ 𝐵))
7 ffvelrn 5629 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑓𝐴) → (𝐻𝑓) ∈ 𝐵)
87ex 114 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑓𝐴 → (𝐻𝑓) ∈ 𝐵))
94, 6, 83anim123d 1314 . . . . . . . . . . 11 (𝐻:𝐴𝐵 → ((𝑑𝐴𝑒𝐴𝑓𝐴) → ((𝐻𝑑) ∈ 𝐵 ∧ (𝐻𝑒) ∈ 𝐵 ∧ (𝐻𝑓) ∈ 𝐵)))
101, 2, 93syl 17 . . . . . . . . . 10 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑑𝐴𝑒𝐴𝑓𝐴) → ((𝐻𝑑) ∈ 𝐵 ∧ (𝐻𝑒) ∈ 𝐵 ∧ (𝐻𝑓) ∈ 𝐵)))
1110imp 123 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → ((𝐻𝑑) ∈ 𝐵 ∧ (𝐻𝑒) ∈ 𝐵 ∧ (𝐻𝑓) ∈ 𝐵))
12 breq12 3994 . . . . . . . . . . . . 13 ((𝑎 = (𝐻𝑑) ∧ 𝑎 = (𝐻𝑑)) → (𝑎𝑆𝑎 ↔ (𝐻𝑑)𝑆(𝐻𝑑)))
1312anidms 395 . . . . . . . . . . . 12 (𝑎 = (𝐻𝑑) → (𝑎𝑆𝑎 ↔ (𝐻𝑑)𝑆(𝐻𝑑)))
1413notbid 662 . . . . . . . . . . 11 (𝑎 = (𝐻𝑑) → (¬ 𝑎𝑆𝑎 ↔ ¬ (𝐻𝑑)𝑆(𝐻𝑑)))
15 breq1 3992 . . . . . . . . . . . . 13 (𝑎 = (𝐻𝑑) → (𝑎𝑆𝑏 ↔ (𝐻𝑑)𝑆𝑏))
1615anbi1d 462 . . . . . . . . . . . 12 (𝑎 = (𝐻𝑑) → ((𝑎𝑆𝑏𝑏𝑆𝑐) ↔ ((𝐻𝑑)𝑆𝑏𝑏𝑆𝑐)))
17 breq1 3992 . . . . . . . . . . . 12 (𝑎 = (𝐻𝑑) → (𝑎𝑆𝑐 ↔ (𝐻𝑑)𝑆𝑐))
1816, 17imbi12d 233 . . . . . . . . . . 11 (𝑎 = (𝐻𝑑) → (((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐) ↔ (((𝐻𝑑)𝑆𝑏𝑏𝑆𝑐) → (𝐻𝑑)𝑆𝑐)))
1914, 18anbi12d 470 . . . . . . . . . 10 (𝑎 = (𝐻𝑑) → ((¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) ↔ (¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆𝑏𝑏𝑆𝑐) → (𝐻𝑑)𝑆𝑐))))
20 breq2 3993 . . . . . . . . . . . . 13 (𝑏 = (𝐻𝑒) → ((𝐻𝑑)𝑆𝑏 ↔ (𝐻𝑑)𝑆(𝐻𝑒)))
21 breq1 3992 . . . . . . . . . . . . 13 (𝑏 = (𝐻𝑒) → (𝑏𝑆𝑐 ↔ (𝐻𝑒)𝑆𝑐))
2220, 21anbi12d 470 . . . . . . . . . . . 12 (𝑏 = (𝐻𝑒) → (((𝐻𝑑)𝑆𝑏𝑏𝑆𝑐) ↔ ((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆𝑐)))
2322imbi1d 230 . . . . . . . . . . 11 (𝑏 = (𝐻𝑒) → ((((𝐻𝑑)𝑆𝑏𝑏𝑆𝑐) → (𝐻𝑑)𝑆𝑐) ↔ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆𝑐) → (𝐻𝑑)𝑆𝑐)))
2423anbi2d 461 . . . . . . . . . 10 (𝑏 = (𝐻𝑒) → ((¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆𝑏𝑏𝑆𝑐) → (𝐻𝑑)𝑆𝑐)) ↔ (¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆𝑐) → (𝐻𝑑)𝑆𝑐))))
25 breq2 3993 . . . . . . . . . . . . 13 (𝑐 = (𝐻𝑓) → ((𝐻𝑒)𝑆𝑐 ↔ (𝐻𝑒)𝑆(𝐻𝑓)))
2625anbi2d 461 . . . . . . . . . . . 12 (𝑐 = (𝐻𝑓) → (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆𝑐) ↔ ((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓))))
27 breq2 3993 . . . . . . . . . . . 12 (𝑐 = (𝐻𝑓) → ((𝐻𝑑)𝑆𝑐 ↔ (𝐻𝑑)𝑆(𝐻𝑓)))
2826, 27imbi12d 233 . . . . . . . . . . 11 (𝑐 = (𝐻𝑓) → ((((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆𝑐) → (𝐻𝑑)𝑆𝑐) ↔ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓)) → (𝐻𝑑)𝑆(𝐻𝑓))))
2928anbi2d 461 . . . . . . . . . 10 (𝑐 = (𝐻𝑓) → ((¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆𝑐) → (𝐻𝑑)𝑆𝑐)) ↔ (¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓)) → (𝐻𝑑)𝑆(𝐻𝑓)))))
3019, 24, 29rspc3v 2850 . . . . . . . . 9 (((𝐻𝑑) ∈ 𝐵 ∧ (𝐻𝑒) ∈ 𝐵 ∧ (𝐻𝑓) ∈ 𝐵) → (∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → (¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓)) → (𝐻𝑑)𝑆(𝐻𝑓)))))
3111, 30syl 14 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → (¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓)) → (𝐻𝑑)𝑆(𝐻𝑓)))))
32 simpl 108 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
33 simpr1 998 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → 𝑑𝐴)
34 isorel 5787 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑑𝐴)) → (𝑑𝑅𝑑 ↔ (𝐻𝑑)𝑆(𝐻𝑑)))
3532, 33, 33, 34syl12anc 1231 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (𝑑𝑅𝑑 ↔ (𝐻𝑑)𝑆(𝐻𝑑)))
3635notbid 662 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (¬ 𝑑𝑅𝑑 ↔ ¬ (𝐻𝑑)𝑆(𝐻𝑑)))
37 simpr2 999 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → 𝑒𝐴)
38 isorel 5787 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴)) → (𝑑𝑅𝑒 ↔ (𝐻𝑑)𝑆(𝐻𝑒)))
3932, 33, 37, 38syl12anc 1231 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (𝑑𝑅𝑒 ↔ (𝐻𝑑)𝑆(𝐻𝑒)))
40 simpr3 1000 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → 𝑓𝐴)
41 isorel 5787 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑒𝐴𝑓𝐴)) → (𝑒𝑅𝑓 ↔ (𝐻𝑒)𝑆(𝐻𝑓)))
4232, 37, 40, 41syl12anc 1231 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (𝑒𝑅𝑓 ↔ (𝐻𝑒)𝑆(𝐻𝑓)))
4339, 42anbi12d 470 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → ((𝑑𝑅𝑒𝑒𝑅𝑓) ↔ ((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓))))
44 isorel 5787 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑓𝐴)) → (𝑑𝑅𝑓 ↔ (𝐻𝑑)𝑆(𝐻𝑓)))
4532, 33, 40, 44syl12anc 1231 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (𝑑𝑅𝑓 ↔ (𝐻𝑑)𝑆(𝐻𝑓)))
4643, 45imbi12d 233 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓) ↔ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓)) → (𝐻𝑑)𝑆(𝐻𝑓))))
4736, 46anbi12d 470 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → ((¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓)) ↔ (¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓)) → (𝐻𝑑)𝑆(𝐻𝑓)))))
4831, 47sylibrd 168 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓))))
4948ex 114 . . . . . 6 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑑𝐴𝑒𝐴𝑓𝐴) → (∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓)))))
5049com23 78 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → ((𝑑𝐴𝑒𝐴𝑓𝐴) → (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓)))))
5150imp31 254 . . . 4 (((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐))) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓)))
5251ralrimivvva 2553 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐))) → ∀𝑑𝐴𝑒𝐴𝑓𝐴𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓)))
5352ex 114 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → ∀𝑑𝐴𝑒𝐴𝑓𝐴𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓))))
54 df-po 4281 . 2 (𝑆 Po 𝐵 ↔ ∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)))
55 df-po 4281 . 2 (𝑅 Po 𝐴 ↔ ∀𝑑𝐴𝑒𝐴𝑓𝐴𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓)))
5653, 54, 553imtr4g 204 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵𝑅 Po 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wral 2448   class class class wbr 3989   Po wpo 4279  wf 5194  1-1-ontowf1o 5197  cfv 5198   Isom wiso 5199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-f1o 5205  df-fv 5206  df-isom 5207
This theorem is referenced by:  isopo  5802  isosolem  5803
  Copyright terms: Public domain W3C validator