ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isopolem GIF version

Theorem isopolem 5865
Description: Lemma for isopo 5866. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
isopolem (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵𝑅 Po 𝐴))

Proof of Theorem isopolem
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5850 . . . . . . . . . . 11 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
2 f1of 5500 . . . . . . . . . . 11 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
3 ffvelcdm 5691 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑑𝐴) → (𝐻𝑑) ∈ 𝐵)
43ex 115 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑑𝐴 → (𝐻𝑑) ∈ 𝐵))
5 ffvelcdm 5691 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑒𝐴) → (𝐻𝑒) ∈ 𝐵)
65ex 115 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑒𝐴 → (𝐻𝑒) ∈ 𝐵))
7 ffvelcdm 5691 . . . . . . . . . . . . 13 ((𝐻:𝐴𝐵𝑓𝐴) → (𝐻𝑓) ∈ 𝐵)
87ex 115 . . . . . . . . . . . 12 (𝐻:𝐴𝐵 → (𝑓𝐴 → (𝐻𝑓) ∈ 𝐵))
94, 6, 83anim123d 1330 . . . . . . . . . . 11 (𝐻:𝐴𝐵 → ((𝑑𝐴𝑒𝐴𝑓𝐴) → ((𝐻𝑑) ∈ 𝐵 ∧ (𝐻𝑒) ∈ 𝐵 ∧ (𝐻𝑓) ∈ 𝐵)))
101, 2, 93syl 17 . . . . . . . . . 10 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑑𝐴𝑒𝐴𝑓𝐴) → ((𝐻𝑑) ∈ 𝐵 ∧ (𝐻𝑒) ∈ 𝐵 ∧ (𝐻𝑓) ∈ 𝐵)))
1110imp 124 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → ((𝐻𝑑) ∈ 𝐵 ∧ (𝐻𝑒) ∈ 𝐵 ∧ (𝐻𝑓) ∈ 𝐵))
12 breq12 4034 . . . . . . . . . . . . 13 ((𝑎 = (𝐻𝑑) ∧ 𝑎 = (𝐻𝑑)) → (𝑎𝑆𝑎 ↔ (𝐻𝑑)𝑆(𝐻𝑑)))
1312anidms 397 . . . . . . . . . . . 12 (𝑎 = (𝐻𝑑) → (𝑎𝑆𝑎 ↔ (𝐻𝑑)𝑆(𝐻𝑑)))
1413notbid 668 . . . . . . . . . . 11 (𝑎 = (𝐻𝑑) → (¬ 𝑎𝑆𝑎 ↔ ¬ (𝐻𝑑)𝑆(𝐻𝑑)))
15 breq1 4032 . . . . . . . . . . . . 13 (𝑎 = (𝐻𝑑) → (𝑎𝑆𝑏 ↔ (𝐻𝑑)𝑆𝑏))
1615anbi1d 465 . . . . . . . . . . . 12 (𝑎 = (𝐻𝑑) → ((𝑎𝑆𝑏𝑏𝑆𝑐) ↔ ((𝐻𝑑)𝑆𝑏𝑏𝑆𝑐)))
17 breq1 4032 . . . . . . . . . . . 12 (𝑎 = (𝐻𝑑) → (𝑎𝑆𝑐 ↔ (𝐻𝑑)𝑆𝑐))
1816, 17imbi12d 234 . . . . . . . . . . 11 (𝑎 = (𝐻𝑑) → (((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐) ↔ (((𝐻𝑑)𝑆𝑏𝑏𝑆𝑐) → (𝐻𝑑)𝑆𝑐)))
1914, 18anbi12d 473 . . . . . . . . . 10 (𝑎 = (𝐻𝑑) → ((¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) ↔ (¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆𝑏𝑏𝑆𝑐) → (𝐻𝑑)𝑆𝑐))))
20 breq2 4033 . . . . . . . . . . . . 13 (𝑏 = (𝐻𝑒) → ((𝐻𝑑)𝑆𝑏 ↔ (𝐻𝑑)𝑆(𝐻𝑒)))
21 breq1 4032 . . . . . . . . . . . . 13 (𝑏 = (𝐻𝑒) → (𝑏𝑆𝑐 ↔ (𝐻𝑒)𝑆𝑐))
2220, 21anbi12d 473 . . . . . . . . . . . 12 (𝑏 = (𝐻𝑒) → (((𝐻𝑑)𝑆𝑏𝑏𝑆𝑐) ↔ ((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆𝑐)))
2322imbi1d 231 . . . . . . . . . . 11 (𝑏 = (𝐻𝑒) → ((((𝐻𝑑)𝑆𝑏𝑏𝑆𝑐) → (𝐻𝑑)𝑆𝑐) ↔ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆𝑐) → (𝐻𝑑)𝑆𝑐)))
2423anbi2d 464 . . . . . . . . . 10 (𝑏 = (𝐻𝑒) → ((¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆𝑏𝑏𝑆𝑐) → (𝐻𝑑)𝑆𝑐)) ↔ (¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆𝑐) → (𝐻𝑑)𝑆𝑐))))
25 breq2 4033 . . . . . . . . . . . . 13 (𝑐 = (𝐻𝑓) → ((𝐻𝑒)𝑆𝑐 ↔ (𝐻𝑒)𝑆(𝐻𝑓)))
2625anbi2d 464 . . . . . . . . . . . 12 (𝑐 = (𝐻𝑓) → (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆𝑐) ↔ ((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓))))
27 breq2 4033 . . . . . . . . . . . 12 (𝑐 = (𝐻𝑓) → ((𝐻𝑑)𝑆𝑐 ↔ (𝐻𝑑)𝑆(𝐻𝑓)))
2826, 27imbi12d 234 . . . . . . . . . . 11 (𝑐 = (𝐻𝑓) → ((((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆𝑐) → (𝐻𝑑)𝑆𝑐) ↔ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓)) → (𝐻𝑑)𝑆(𝐻𝑓))))
2928anbi2d 464 . . . . . . . . . 10 (𝑐 = (𝐻𝑓) → ((¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆𝑐) → (𝐻𝑑)𝑆𝑐)) ↔ (¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓)) → (𝐻𝑑)𝑆(𝐻𝑓)))))
3019, 24, 29rspc3v 2880 . . . . . . . . 9 (((𝐻𝑑) ∈ 𝐵 ∧ (𝐻𝑒) ∈ 𝐵 ∧ (𝐻𝑓) ∈ 𝐵) → (∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → (¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓)) → (𝐻𝑑)𝑆(𝐻𝑓)))))
3111, 30syl 14 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → (¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓)) → (𝐻𝑑)𝑆(𝐻𝑓)))))
32 simpl 109 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
33 simpr1 1005 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → 𝑑𝐴)
34 isorel 5851 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑑𝐴)) → (𝑑𝑅𝑑 ↔ (𝐻𝑑)𝑆(𝐻𝑑)))
3532, 33, 33, 34syl12anc 1247 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (𝑑𝑅𝑑 ↔ (𝐻𝑑)𝑆(𝐻𝑑)))
3635notbid 668 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (¬ 𝑑𝑅𝑑 ↔ ¬ (𝐻𝑑)𝑆(𝐻𝑑)))
37 simpr2 1006 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → 𝑒𝐴)
38 isorel 5851 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴)) → (𝑑𝑅𝑒 ↔ (𝐻𝑑)𝑆(𝐻𝑒)))
3932, 33, 37, 38syl12anc 1247 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (𝑑𝑅𝑒 ↔ (𝐻𝑑)𝑆(𝐻𝑒)))
40 simpr3 1007 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → 𝑓𝐴)
41 isorel 5851 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑒𝐴𝑓𝐴)) → (𝑒𝑅𝑓 ↔ (𝐻𝑒)𝑆(𝐻𝑓)))
4232, 37, 40, 41syl12anc 1247 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (𝑒𝑅𝑓 ↔ (𝐻𝑒)𝑆(𝐻𝑓)))
4339, 42anbi12d 473 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → ((𝑑𝑅𝑒𝑒𝑅𝑓) ↔ ((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓))))
44 isorel 5851 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑓𝐴)) → (𝑑𝑅𝑓 ↔ (𝐻𝑑)𝑆(𝐻𝑓)))
4532, 33, 40, 44syl12anc 1247 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (𝑑𝑅𝑓 ↔ (𝐻𝑑)𝑆(𝐻𝑓)))
4643, 45imbi12d 234 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓) ↔ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓)) → (𝐻𝑑)𝑆(𝐻𝑓))))
4736, 46anbi12d 473 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → ((¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓)) ↔ (¬ (𝐻𝑑)𝑆(𝐻𝑑) ∧ (((𝐻𝑑)𝑆(𝐻𝑒) ∧ (𝐻𝑒)𝑆(𝐻𝑓)) → (𝐻𝑑)𝑆(𝐻𝑓)))))
4831, 47sylibrd 169 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓))))
4948ex 115 . . . . . 6 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑑𝐴𝑒𝐴𝑓𝐴) → (∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓)))))
5049com23 78 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → ((𝑑𝐴𝑒𝐴𝑓𝐴) → (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓)))))
5150imp31 256 . . . 4 (((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐))) ∧ (𝑑𝐴𝑒𝐴𝑓𝐴)) → (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓)))
5251ralrimivvva 2577 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐))) → ∀𝑑𝐴𝑒𝐴𝑓𝐴𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓)))
5352ex 115 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → ∀𝑑𝐴𝑒𝐴𝑓𝐴𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓))))
54 df-po 4327 . 2 (𝑆 Po 𝐵 ↔ ∀𝑎𝐵𝑏𝐵𝑐𝐵𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏𝑏𝑆𝑐) → 𝑎𝑆𝑐)))
55 df-po 4327 . 2 (𝑅 Po 𝐴 ↔ ∀𝑑𝐴𝑒𝐴𝑓𝐴𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒𝑒𝑅𝑓) → 𝑑𝑅𝑓)))
5653, 54, 553imtr4g 205 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵𝑅 Po 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472   class class class wbr 4029   Po wpo 4325  wf 5250  1-1-ontowf1o 5253  cfv 5254   Isom wiso 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-f1o 5261  df-fv 5262  df-isom 5263
This theorem is referenced by:  isopo  5866  isosolem  5867
  Copyright terms: Public domain W3C validator