ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poinxp GIF version

Theorem poinxp 4697
Description: Intersection of partial order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
poinxp (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)

Proof of Theorem poinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → 𝑥𝐴)
2 brinxp 4696 . . . . . . . 8 ((𝑥𝐴𝑥𝐴) → (𝑥𝑅𝑥𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
31, 1, 2syl2anc 411 . . . . . . 7 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (𝑥𝑅𝑥𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
43notbid 667 . . . . . 6 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
5 brinxp 4696 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
65adantr 276 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
7 brinxp 4696 . . . . . . . . 9 ((𝑦𝐴𝑧𝐴) → (𝑦𝑅𝑧𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧))
87adantll 476 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (𝑦𝑅𝑧𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧))
96, 8anbi12d 473 . . . . . . 7 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧)))
10 brinxp 4696 . . . . . . . 8 ((𝑥𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
1110adantlr 477 . . . . . . 7 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
129, 11imbi12d 234 . . . . . 6 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)))
134, 12anbi12d 473 . . . . 5 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))))
1413ralbidva 2473 . . . 4 ((𝑥𝐴𝑦𝐴) → (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))))
1514ralbidva 2473 . . 3 (𝑥𝐴 → (∀𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦𝐴𝑧𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))))
1615ralbiia 2491 . 2 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)))
17 df-po 4298 . 2 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
18 df-po 4298 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)))
1916, 17, 183bitr4i 212 1 (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2148  wral 2455  cin 3130   class class class wbr 4005   Po wpo 4296   × cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-po 4298  df-xp 4634
This theorem is referenced by:  soinxp  4698
  Copyright terms: Public domain W3C validator