ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poinxp GIF version

Theorem poinxp 4732
Description: Intersection of partial order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
poinxp (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)

Proof of Theorem poinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → 𝑥𝐴)
2 brinxp 4731 . . . . . . . 8 ((𝑥𝐴𝑥𝐴) → (𝑥𝑅𝑥𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
31, 1, 2syl2anc 411 . . . . . . 7 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (𝑥𝑅𝑥𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
43notbid 668 . . . . . 6 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
5 brinxp 4731 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
65adantr 276 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
7 brinxp 4731 . . . . . . . . 9 ((𝑦𝐴𝑧𝐴) → (𝑦𝑅𝑧𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧))
87adantll 476 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (𝑦𝑅𝑧𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧))
96, 8anbi12d 473 . . . . . . 7 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧)))
10 brinxp 4731 . . . . . . . 8 ((𝑥𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
1110adantlr 477 . . . . . . 7 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
129, 11imbi12d 234 . . . . . 6 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)))
134, 12anbi12d 473 . . . . 5 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))))
1413ralbidva 2493 . . . 4 ((𝑥𝐴𝑦𝐴) → (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))))
1514ralbidva 2493 . . 3 (𝑥𝐴 → (∀𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦𝐴𝑧𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))))
1615ralbiia 2511 . 2 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)))
17 df-po 4331 . 2 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
18 df-po 4331 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)))
1916, 17, 183bitr4i 212 1 (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2167  wral 2475  cin 3156   class class class wbr 4033   Po wpo 4329   × cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-po 4331  df-xp 4669
This theorem is referenced by:  soinxp  4733
  Copyright terms: Public domain W3C validator