ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ispod GIF version

Theorem ispod 4335
Description: Sufficient conditions for a partial order. (Contributed by NM, 9-Jul-2014.)
Hypotheses
Ref Expression
ispod.1 ((𝜑𝑥𝐴) → ¬ 𝑥𝑅𝑥)
ispod.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Assertion
Ref Expression
ispod (𝜑𝑅 Po 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem ispod
StepHypRef Expression
1 ispod.1 . . . . 5 ((𝜑𝑥𝐴) → ¬ 𝑥𝑅𝑥)
213ad2antr1 1164 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ 𝑥𝑅𝑥)
3 ispod.2 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
42, 3jca 306 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
54ralrimivvva 2577 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
6 df-po 4327 . 2 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
75, 6sylibr 134 1 (𝜑𝑅 Po 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 980  wcel 2164  wral 2472   class class class wbr 4029   Po wpo 4325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1472  df-ral 2477  df-po 4327
This theorem is referenced by:  swopo  4337  pofun  4343  wepo  4390  ltsopi  7380  ltsonq  7458  ltpopr  7655  ltposr  7823  ltso  8097  xrltso  9862
  Copyright terms: Public domain W3C validator