![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ispod | GIF version |
Description: Sufficient conditions for a partial order. (Contributed by NM, 9-Jul-2014.) |
Ref | Expression |
---|---|
ispod.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) |
ispod.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Ref | Expression |
---|---|
ispod | ⊢ (𝜑 → 𝑅 Po 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispod.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) | |
2 | 1 | 3ad2antr1 1162 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ¬ 𝑥𝑅𝑥) |
3 | ispod.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | |
4 | 2, 3 | jca 306 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
5 | 4 | ralrimivvva 2560 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
6 | df-po 4298 | . 2 ⊢ (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | |
7 | 5, 6 | sylibr 134 | 1 ⊢ (𝜑 → 𝑅 Po 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 978 ∈ wcel 2148 ∀wral 2455 class class class wbr 4005 Po wpo 4296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-nf 1461 df-ral 2460 df-po 4298 |
This theorem is referenced by: swopo 4308 pofun 4314 wepo 4361 ltsopi 7321 ltsonq 7399 ltpopr 7596 ltposr 7764 ltso 8037 xrltso 9798 |
Copyright terms: Public domain | W3C validator |