![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-iso | GIF version |
Description: Define the strict linear order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. The property 𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) is called weak linearity by Proposition 11.2.3 of [HoTT], p. (varies). If we assumed excluded middle, it would be equivalent to trichotomy, 𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥. (Contributed by NM, 21-Jan-1996.) (Revised by Jim Kingdon, 4-Oct-2018.) |
Ref | Expression |
---|---|
df-iso | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wor 4296 | . 2 wff 𝑅 Or 𝐴 |
4 | 1, 2 | wpo 4295 | . . 3 wff 𝑅 Po 𝐴 |
5 | vx | . . . . . . . . 9 setvar 𝑥 | |
6 | 5 | cv 1352 | . . . . . . . 8 class 𝑥 |
7 | vy | . . . . . . . . 9 setvar 𝑦 | |
8 | 7 | cv 1352 | . . . . . . . 8 class 𝑦 |
9 | 6, 8, 2 | wbr 4004 | . . . . . . 7 wff 𝑥𝑅𝑦 |
10 | vz | . . . . . . . . . 10 setvar 𝑧 | |
11 | 10 | cv 1352 | . . . . . . . . 9 class 𝑧 |
12 | 6, 11, 2 | wbr 4004 | . . . . . . . 8 wff 𝑥𝑅𝑧 |
13 | 11, 8, 2 | wbr 4004 | . . . . . . . 8 wff 𝑧𝑅𝑦 |
14 | 12, 13 | wo 708 | . . . . . . 7 wff (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) |
15 | 9, 14 | wi 4 | . . . . . 6 wff (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
16 | 15, 10, 1 | wral 2455 | . . . . 5 wff ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
17 | 16, 7, 1 | wral 2455 | . . . 4 wff ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
18 | 17, 5, 1 | wral 2455 | . . 3 wff ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
19 | 4, 18 | wa 104 | . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
20 | 3, 19 | wb 105 | 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
Colors of variables: wff set class |
This definition is referenced by: nfso 4303 sopo 4314 soss 4315 soeq1 4316 issod 4320 sowlin 4321 so0 4327 ordsoexmid 4562 soinxp 4697 sosng 4700 cnvsom 5173 isosolem 5825 ltsopr 7595 ltsosr 7763 ltso 8035 xrltso 9796 |
Copyright terms: Public domain | W3C validator |