Detailed syntax breakdown of Definition df-iso
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | | cR |
. . 3
class 𝑅 |
| 3 | 1, 2 | wor 4331 |
. 2
wff 𝑅 Or 𝐴 |
| 4 | 1, 2 | wpo 4330 |
. . 3
wff 𝑅 Po 𝐴 |
| 5 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 6 | 5 | cv 1363 |
. . . . . . . 8
class 𝑥 |
| 7 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 8 | 7 | cv 1363 |
. . . . . . . 8
class 𝑦 |
| 9 | 6, 8, 2 | wbr 4034 |
. . . . . . 7
wff 𝑥𝑅𝑦 |
| 10 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
| 11 | 10 | cv 1363 |
. . . . . . . . 9
class 𝑧 |
| 12 | 6, 11, 2 | wbr 4034 |
. . . . . . . 8
wff 𝑥𝑅𝑧 |
| 13 | 11, 8, 2 | wbr 4034 |
. . . . . . . 8
wff 𝑧𝑅𝑦 |
| 14 | 12, 13 | wo 709 |
. . . . . . 7
wff (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) |
| 15 | 9, 14 | wi 4 |
. . . . . 6
wff (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
| 16 | 15, 10, 1 | wral 2475 |
. . . . 5
wff
∀𝑧 ∈
𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
| 17 | 16, 7, 1 | wral 2475 |
. . . 4
wff
∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
| 18 | 17, 5, 1 | wral 2475 |
. . 3
wff
∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
| 19 | 4, 18 | wa 104 |
. 2
wff (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
| 20 | 3, 19 | wb 105 |
1
wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |