ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iso GIF version

Definition df-iso 4333
Description: Define the strict linear order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. The property 𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦) is called weak linearity by Proposition 11.2.3 of [HoTT], p. (varies). If we assumed excluded middle, it would be equivalent to trichotomy, 𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥. (Contributed by NM, 21-Jan-1996.) (Revised by Jim Kingdon, 4-Oct-2018.)
Assertion
Ref Expression
df-iso (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧

Detailed syntax breakdown of Definition df-iso
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wor 4331 . 2 wff 𝑅 Or 𝐴
41, 2wpo 4330 . . 3 wff 𝑅 Po 𝐴
5 vx . . . . . . . . 9 setvar 𝑥
65cv 1363 . . . . . . . 8 class 𝑥
7 vy . . . . . . . . 9 setvar 𝑦
87cv 1363 . . . . . . . 8 class 𝑦
96, 8, 2wbr 4034 . . . . . . 7 wff 𝑥𝑅𝑦
10 vz . . . . . . . . . 10 setvar 𝑧
1110cv 1363 . . . . . . . . 9 class 𝑧
126, 11, 2wbr 4034 . . . . . . . 8 wff 𝑥𝑅𝑧
1311, 8, 2wbr 4034 . . . . . . . 8 wff 𝑧𝑅𝑦
1412, 13wo 709 . . . . . . 7 wff (𝑥𝑅𝑧𝑧𝑅𝑦)
159, 14wi 4 . . . . . 6 wff (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))
1615, 10, 1wral 2475 . . . . 5 wff 𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))
1716, 7, 1wral 2475 . . . 4 wff 𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))
1817, 5, 1wral 2475 . . 3 wff 𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))
194, 18wa 104 . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
203, 19wb 105 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
Colors of variables: wff set class
This definition is referenced by:  nfso  4338  sopo  4349  soss  4350  soeq1  4351  issod  4355  sowlin  4356  so0  4362  ordsoexmid  4599  soinxp  4734  sosng  4737  cnvsom  5214  isosolem  5874  ltsopr  7680  ltsosr  7848  ltso  8121  xrltso  9888
  Copyright terms: Public domain W3C validator