Detailed syntax breakdown of Definition df-iso
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | | cR |
. . 3
class 𝑅 |
3 | 1, 2 | wor 4278 |
. 2
wff 𝑅 Or 𝐴 |
4 | 1, 2 | wpo 4277 |
. . 3
wff 𝑅 Po 𝐴 |
5 | | vx |
. . . . . . . . 9
setvar 𝑥 |
6 | 5 | cv 1347 |
. . . . . . . 8
class 𝑥 |
7 | | vy |
. . . . . . . . 9
setvar 𝑦 |
8 | 7 | cv 1347 |
. . . . . . . 8
class 𝑦 |
9 | 6, 8, 2 | wbr 3987 |
. . . . . . 7
wff 𝑥𝑅𝑦 |
10 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
11 | 10 | cv 1347 |
. . . . . . . . 9
class 𝑧 |
12 | 6, 11, 2 | wbr 3987 |
. . . . . . . 8
wff 𝑥𝑅𝑧 |
13 | 11, 8, 2 | wbr 3987 |
. . . . . . . 8
wff 𝑧𝑅𝑦 |
14 | 12, 13 | wo 703 |
. . . . . . 7
wff (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) |
15 | 9, 14 | wi 4 |
. . . . . 6
wff (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
16 | 15, 10, 1 | wral 2448 |
. . . . 5
wff
∀𝑧 ∈
𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
17 | 16, 7, 1 | wral 2448 |
. . . 4
wff
∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
18 | 17, 5, 1 | wral 2448 |
. . 3
wff
∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
19 | 4, 18 | wa 103 |
. 2
wff (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
20 | 3, 19 | wb 104 |
1
wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |