ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iso GIF version

Definition df-iso 4332
Description: Define the strict linear order predicate. The expression 𝑅 Or 𝐴 is true if relationship 𝑅 orders 𝐴. The property 𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦) is called weak linearity by Proposition 11.2.3 of [HoTT], p. (varies). If we assumed excluded middle, it would be equivalent to trichotomy, 𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥. (Contributed by NM, 21-Jan-1996.) (Revised by Jim Kingdon, 4-Oct-2018.)
Assertion
Ref Expression
df-iso (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧

Detailed syntax breakdown of Definition df-iso
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wor 4330 . 2 wff 𝑅 Or 𝐴
41, 2wpo 4329 . . 3 wff 𝑅 Po 𝐴
5 vx . . . . . . . . 9 setvar 𝑥
65cv 1363 . . . . . . . 8 class 𝑥
7 vy . . . . . . . . 9 setvar 𝑦
87cv 1363 . . . . . . . 8 class 𝑦
96, 8, 2wbr 4033 . . . . . . 7 wff 𝑥𝑅𝑦
10 vz . . . . . . . . . 10 setvar 𝑧
1110cv 1363 . . . . . . . . 9 class 𝑧
126, 11, 2wbr 4033 . . . . . . . 8 wff 𝑥𝑅𝑧
1311, 8, 2wbr 4033 . . . . . . . 8 wff 𝑧𝑅𝑦
1412, 13wo 709 . . . . . . 7 wff (𝑥𝑅𝑧𝑧𝑅𝑦)
159, 14wi 4 . . . . . 6 wff (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))
1615, 10, 1wral 2475 . . . . 5 wff 𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))
1716, 7, 1wral 2475 . . . 4 wff 𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))
1817, 5, 1wral 2475 . . 3 wff 𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))
194, 18wa 104 . 2 wff (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
203, 19wb 105 1 wff (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
Colors of variables: wff set class
This definition is referenced by:  nfso  4337  sopo  4348  soss  4349  soeq1  4350  issod  4354  sowlin  4355  so0  4361  ordsoexmid  4598  soinxp  4733  sosng  4736  cnvsom  5213  isosolem  5871  ltsopr  7663  ltsosr  7831  ltso  8104  xrltso  9871
  Copyright terms: Public domain W3C validator