| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfpo | GIF version | ||
| Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| Ref | Expression |
|---|---|
| nfpo.r | ⊢ Ⅎ𝑥𝑅 |
| nfpo.a | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfpo | ⊢ Ⅎ𝑥 𝑅 Po 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-po 4351 | . 2 ⊢ (𝑅 Po 𝐴 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐))) | |
| 2 | nfpo.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2349 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑎 | |
| 4 | nfpo.r | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
| 5 | 3, 4, 3 | nfbr 4098 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑎 |
| 6 | 5 | nfn 1682 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝑎𝑅𝑎 |
| 7 | nfcv 2349 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑏 | |
| 8 | 3, 4, 7 | nfbr 4098 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
| 9 | nfcv 2349 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑐 | |
| 10 | 7, 4, 9 | nfbr 4098 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑏𝑅𝑐 |
| 11 | 8, 10 | nfan 1589 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) |
| 12 | 3, 4, 9 | nfbr 4098 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑐 |
| 13 | 11, 12 | nfim 1596 | . . . . . 6 ⊢ Ⅎ𝑥((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) |
| 14 | 6, 13 | nfan 1589 | . . . . 5 ⊢ Ⅎ𝑥(¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 15 | 2, 14 | nfralxy 2545 | . . . 4 ⊢ Ⅎ𝑥∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 16 | 2, 15 | nfralxy 2545 | . . 3 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 17 | 2, 16 | nfralxy 2545 | . 2 ⊢ Ⅎ𝑥∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 18 | 1, 17 | nfxfr 1498 | 1 ⊢ Ⅎ𝑥 𝑅 Po 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 Ⅎwnf 1484 Ⅎwnfc 2336 ∀wral 2485 class class class wbr 4051 Po wpo 4349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-po 4351 |
| This theorem is referenced by: nfso 4357 |
| Copyright terms: Public domain | W3C validator |