| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfpo | GIF version | ||
| Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| nfpo.r | ⊢ Ⅎ𝑥𝑅 | 
| nfpo.a | ⊢ Ⅎ𝑥𝐴 | 
| Ref | Expression | 
|---|---|
| nfpo | ⊢ Ⅎ𝑥 𝑅 Po 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-po 4331 | . 2 ⊢ (𝑅 Po 𝐴 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐))) | |
| 2 | nfpo.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2339 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑎 | |
| 4 | nfpo.r | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
| 5 | 3, 4, 3 | nfbr 4079 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑎 | 
| 6 | 5 | nfn 1672 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝑎𝑅𝑎 | 
| 7 | nfcv 2339 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑏 | |
| 8 | 3, 4, 7 | nfbr 4079 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 | 
| 9 | nfcv 2339 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑐 | |
| 10 | 7, 4, 9 | nfbr 4079 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑏𝑅𝑐 | 
| 11 | 8, 10 | nfan 1579 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) | 
| 12 | 3, 4, 9 | nfbr 4079 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑐 | 
| 13 | 11, 12 | nfim 1586 | . . . . . 6 ⊢ Ⅎ𝑥((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) | 
| 14 | 6, 13 | nfan 1579 | . . . . 5 ⊢ Ⅎ𝑥(¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) | 
| 15 | 2, 14 | nfralxy 2535 | . . . 4 ⊢ Ⅎ𝑥∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) | 
| 16 | 2, 15 | nfralxy 2535 | . . 3 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) | 
| 17 | 2, 16 | nfralxy 2535 | . 2 ⊢ Ⅎ𝑥∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) | 
| 18 | 1, 17 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥 𝑅 Po 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 Ⅎwnf 1474 Ⅎwnfc 2326 ∀wral 2475 class class class wbr 4033 Po wpo 4329 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-po 4331 | 
| This theorem is referenced by: nfso 4337 | 
| Copyright terms: Public domain | W3C validator |