ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfpo GIF version

Theorem nfpo 4286
Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r 𝑥𝑅
nfpo.a 𝑥𝐴
Assertion
Ref Expression
nfpo 𝑥 𝑅 Po 𝐴

Proof of Theorem nfpo
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-po 4281 . 2 (𝑅 Po 𝐴 ↔ ∀𝑎𝐴𝑏𝐴𝑐𝐴𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐)))
2 nfpo.a . . 3 𝑥𝐴
3 nfcv 2312 . . . . . . . 8 𝑥𝑎
4 nfpo.r . . . . . . . 8 𝑥𝑅
53, 4, 3nfbr 4035 . . . . . . 7 𝑥 𝑎𝑅𝑎
65nfn 1651 . . . . . 6 𝑥 ¬ 𝑎𝑅𝑎
7 nfcv 2312 . . . . . . . . 9 𝑥𝑏
83, 4, 7nfbr 4035 . . . . . . . 8 𝑥 𝑎𝑅𝑏
9 nfcv 2312 . . . . . . . . 9 𝑥𝑐
107, 4, 9nfbr 4035 . . . . . . . 8 𝑥 𝑏𝑅𝑐
118, 10nfan 1558 . . . . . . 7 𝑥(𝑎𝑅𝑏𝑏𝑅𝑐)
123, 4, 9nfbr 4035 . . . . . . 7 𝑥 𝑎𝑅𝑐
1311, 12nfim 1565 . . . . . 6 𝑥((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐)
146, 13nfan 1558 . . . . 5 𝑥𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
152, 14nfralxy 2508 . . . 4 𝑥𝑐𝐴𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
162, 15nfralxy 2508 . . 3 𝑥𝑏𝐴𝑐𝐴𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
172, 16nfralxy 2508 . 2 𝑥𝑎𝐴𝑏𝐴𝑐𝐴𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
181, 17nfxfr 1467 1 𝑥 𝑅 Po 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wnf 1453  wnfc 2299  wral 2448   class class class wbr 3989   Po wpo 4279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-po 4281
This theorem is referenced by:  nfso  4287
  Copyright terms: Public domain W3C validator