| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfpo | GIF version | ||
| Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| Ref | Expression |
|---|---|
| nfpo.r | ⊢ Ⅎ𝑥𝑅 |
| nfpo.a | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfpo | ⊢ Ⅎ𝑥 𝑅 Po 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-po 4386 | . 2 ⊢ (𝑅 Po 𝐴 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐))) | |
| 2 | nfpo.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2372 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑎 | |
| 4 | nfpo.r | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
| 5 | 3, 4, 3 | nfbr 4129 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑎 |
| 6 | 5 | nfn 1704 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝑎𝑅𝑎 |
| 7 | nfcv 2372 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑏 | |
| 8 | 3, 4, 7 | nfbr 4129 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
| 9 | nfcv 2372 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑐 | |
| 10 | 7, 4, 9 | nfbr 4129 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑏𝑅𝑐 |
| 11 | 8, 10 | nfan 1611 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) |
| 12 | 3, 4, 9 | nfbr 4129 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑐 |
| 13 | 11, 12 | nfim 1618 | . . . . . 6 ⊢ Ⅎ𝑥((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) |
| 14 | 6, 13 | nfan 1611 | . . . . 5 ⊢ Ⅎ𝑥(¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 15 | 2, 14 | nfralxy 2568 | . . . 4 ⊢ Ⅎ𝑥∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 16 | 2, 15 | nfralxy 2568 | . . 3 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 17 | 2, 16 | nfralxy 2568 | . 2 ⊢ Ⅎ𝑥∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 18 | 1, 17 | nfxfr 1520 | 1 ⊢ Ⅎ𝑥 𝑅 Po 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 Ⅎwnf 1506 Ⅎwnfc 2359 ∀wral 2508 class class class wbr 4082 Po wpo 4384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-po 4386 |
| This theorem is referenced by: nfso 4392 |
| Copyright terms: Public domain | W3C validator |