Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfpo | GIF version |
Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
Ref | Expression |
---|---|
nfpo.r | ⊢ Ⅎ𝑥𝑅 |
nfpo.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfpo | ⊢ Ⅎ𝑥 𝑅 Po 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-po 4281 | . 2 ⊢ (𝑅 Po 𝐴 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐))) | |
2 | nfpo.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2312 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑎 | |
4 | nfpo.r | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
5 | 3, 4, 3 | nfbr 4035 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑎 |
6 | 5 | nfn 1651 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝑎𝑅𝑎 |
7 | nfcv 2312 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑏 | |
8 | 3, 4, 7 | nfbr 4035 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
9 | nfcv 2312 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑐 | |
10 | 7, 4, 9 | nfbr 4035 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑏𝑅𝑐 |
11 | 8, 10 | nfan 1558 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) |
12 | 3, 4, 9 | nfbr 4035 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑐 |
13 | 11, 12 | nfim 1565 | . . . . . 6 ⊢ Ⅎ𝑥((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) |
14 | 6, 13 | nfan 1558 | . . . . 5 ⊢ Ⅎ𝑥(¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
15 | 2, 14 | nfralxy 2508 | . . . 4 ⊢ Ⅎ𝑥∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
16 | 2, 15 | nfralxy 2508 | . . 3 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
17 | 2, 16 | nfralxy 2508 | . 2 ⊢ Ⅎ𝑥∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
18 | 1, 17 | nfxfr 1467 | 1 ⊢ Ⅎ𝑥 𝑅 Po 𝐴 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 Ⅎwnf 1453 Ⅎwnfc 2299 ∀wral 2448 class class class wbr 3989 Po wpo 4279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-po 4281 |
This theorem is referenced by: nfso 4287 |
Copyright terms: Public domain | W3C validator |