Step | Hyp | Ref
| Expression |
1 | | id 19 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → 𝑥 = 𝐵) |
2 | 1, 1 | breq12d 3978 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝑥 ↔ 𝐵𝑅𝐵)) |
3 | 2 | notbid 657 |
. . . . 5
⊢ (𝑥 = 𝐵 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝐵𝑅𝐵)) |
4 | | breq1 3968 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝑦 ↔ 𝐵𝑅𝑦)) |
5 | 4 | anbi1d 461 |
. . . . . 6
⊢ (𝑥 = 𝐵 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ↔ (𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
6 | | breq1 3968 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝑧 ↔ 𝐵𝑅𝑧)) |
7 | 5, 6 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = 𝐵 → (((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝐵𝑅𝑧))) |
8 | 3, 7 | anbi12d 465 |
. . . 4
⊢ (𝑥 = 𝐵 → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝐵𝑅𝑧)))) |
9 | 8 | imbi2d 229 |
. . 3
⊢ (𝑥 = 𝐵 → ((𝑅 Po 𝐴 → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) ↔ (𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝐵𝑅𝑧))))) |
10 | | breq2 3969 |
. . . . . . 7
⊢ (𝑦 = 𝐶 → (𝐵𝑅𝑦 ↔ 𝐵𝑅𝐶)) |
11 | | breq1 3968 |
. . . . . . 7
⊢ (𝑦 = 𝐶 → (𝑦𝑅𝑧 ↔ 𝐶𝑅𝑧)) |
12 | 10, 11 | anbi12d 465 |
. . . . . 6
⊢ (𝑦 = 𝐶 → ((𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧) ↔ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧))) |
13 | 12 | imbi1d 230 |
. . . . 5
⊢ (𝑦 = 𝐶 → (((𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝐵𝑅𝑧) ↔ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧) → 𝐵𝑅𝑧))) |
14 | 13 | anbi2d 460 |
. . . 4
⊢ (𝑦 = 𝐶 → ((¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝐵𝑅𝑧)) ↔ (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧) → 𝐵𝑅𝑧)))) |
15 | 14 | imbi2d 229 |
. . 3
⊢ (𝑦 = 𝐶 → ((𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝐵𝑅𝑧))) ↔ (𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧) → 𝐵𝑅𝑧))))) |
16 | | breq2 3969 |
. . . . . . 7
⊢ (𝑧 = 𝐷 → (𝐶𝑅𝑧 ↔ 𝐶𝑅𝐷)) |
17 | 16 | anbi2d 460 |
. . . . . 6
⊢ (𝑧 = 𝐷 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧) ↔ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷))) |
18 | | breq2 3969 |
. . . . . 6
⊢ (𝑧 = 𝐷 → (𝐵𝑅𝑧 ↔ 𝐵𝑅𝐷)) |
19 | 17, 18 | imbi12d 233 |
. . . . 5
⊢ (𝑧 = 𝐷 → (((𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧) → 𝐵𝑅𝑧) ↔ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷))) |
20 | 19 | anbi2d 460 |
. . . 4
⊢ (𝑧 = 𝐷 → ((¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧) → 𝐵𝑅𝑧)) ↔ (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)))) |
21 | 20 | imbi2d 229 |
. . 3
⊢ (𝑧 = 𝐷 → ((𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧) → 𝐵𝑅𝑧))) ↔ (𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷))))) |
22 | | df-po 4256 |
. . . . . . . 8
⊢ (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
23 | | r3al 2501 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
24 | 22, 23 | bitri 183 |
. . . . . . 7
⊢ (𝑅 Po 𝐴 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
25 | 24 | biimpi 119 |
. . . . . 6
⊢ (𝑅 Po 𝐴 → ∀𝑥∀𝑦∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
26 | 25 | 19.21bbi 1539 |
. . . . 5
⊢ (𝑅 Po 𝐴 → ∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
27 | 26 | 19.21bi 1538 |
. . . 4
⊢ (𝑅 Po 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
28 | 27 | com12 30 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑅 Po 𝐴 → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) |
29 | 9, 15, 21, 28 | vtocl3ga 2782 |
. 2
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (𝑅 Po 𝐴 → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)))) |
30 | 29 | com12 30 |
1
⊢ (𝑅 Po 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)))) |