ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  posng GIF version

Theorem posng 4467
Description: Partial ordering of a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.)
Assertion
Ref Expression
posng ((Rel 𝑅𝐴 ∈ V) → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))

Proof of Theorem posng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-po 4086 . 2 (𝑅 Po {𝐴} ↔ ∀𝑧 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
2 breq2 3815 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑦𝑅𝑥𝑦𝑅𝐴))
32anbi2d 452 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑧𝑅𝑦𝑦𝑅𝑥) ↔ (𝑧𝑅𝑦𝑦𝑅𝐴)))
4 breq2 3815 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑧𝑅𝑥𝑧𝑅𝐴))
53, 4imbi12d 232 . . . . . . . . 9 (𝑥 = 𝐴 → (((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥) ↔ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴)))
65anbi2d 452 . . . . . . . 8 (𝑥 = 𝐴 → ((¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴))))
76ralsng 3457 . . . . . . 7 (𝐴 ∈ V → (∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴))))
87ralbidv 2374 . . . . . 6 (𝐴 ∈ V → (∀𝑦 ∈ {𝐴}∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ∀𝑦 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴))))
9 simpl 107 . . . . . . . . . 10 ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝑦)
10 breq2 3815 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑧𝑅𝑦𝑧𝑅𝐴))
119, 10syl5ib 152 . . . . . . . . 9 (𝑦 = 𝐴 → ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴))
1211biantrud 298 . . . . . . . 8 (𝑦 = 𝐴 → (¬ 𝑧𝑅𝑧 ↔ (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴))))
1312bicomd 139 . . . . . . 7 (𝑦 = 𝐴 → ((¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴)) ↔ ¬ 𝑧𝑅𝑧))
1413ralsng 3457 . . . . . 6 (𝐴 ∈ V → (∀𝑦 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴)) ↔ ¬ 𝑧𝑅𝑧))
158, 14bitrd 186 . . . . 5 (𝐴 ∈ V → (∀𝑦 ∈ {𝐴}∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ¬ 𝑧𝑅𝑧))
1615ralbidv 2374 . . . 4 (𝐴 ∈ V → (∀𝑧 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑧))
17 breq12 3816 . . . . . . 7 ((𝑧 = 𝐴𝑧 = 𝐴) → (𝑧𝑅𝑧𝐴𝑅𝐴))
1817anidms 389 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑅𝑧𝐴𝑅𝐴))
1918notbid 625 . . . . 5 (𝑧 = 𝐴 → (¬ 𝑧𝑅𝑧 ↔ ¬ 𝐴𝑅𝐴))
2019ralsng 3457 . . . 4 (𝐴 ∈ V → (∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑧 ↔ ¬ 𝐴𝑅𝐴))
2116, 20bitrd 186 . . 3 (𝐴 ∈ V → (∀𝑧 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ¬ 𝐴𝑅𝐴))
2221adantl 271 . 2 ((Rel 𝑅𝐴 ∈ V) → (∀𝑧 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ¬ 𝐴𝑅𝐴))
231, 22syl5bb 190 1 ((Rel 𝑅𝐴 ∈ V) → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  wral 2353  Vcvv 2612  {csn 3422   class class class wbr 3811   Po wpo 4084  Rel wrel 4405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-v 2614  df-sbc 2827  df-un 2988  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812  df-po 4086
This theorem is referenced by:  sosng  4468
  Copyright terms: Public domain W3C validator