ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poeq1 GIF version

Theorem poeq1 4277
Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poeq1 (𝑅 = 𝑆 → (𝑅 Po 𝐴𝑆 Po 𝐴))

Proof of Theorem poeq1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 3984 . . . . . 6 (𝑅 = 𝑆 → (𝑥𝑅𝑥𝑥𝑆𝑥))
21notbid 657 . . . . 5 (𝑅 = 𝑆 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑥𝑆𝑥))
3 breq 3984 . . . . . . 7 (𝑅 = 𝑆 → (𝑥𝑅𝑦𝑥𝑆𝑦))
4 breq 3984 . . . . . . 7 (𝑅 = 𝑆 → (𝑦𝑅𝑧𝑦𝑆𝑧))
53, 4anbi12d 465 . . . . . 6 (𝑅 = 𝑆 → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝑥𝑆𝑦𝑦𝑆𝑧)))
6 breq 3984 . . . . . 6 (𝑅 = 𝑆 → (𝑥𝑅𝑧𝑥𝑆𝑧))
75, 6imbi12d 233 . . . . 5 (𝑅 = 𝑆 → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧)))
82, 7anbi12d 465 . . . 4 (𝑅 = 𝑆 → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥𝑆𝑥 ∧ ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧))))
98ralbidv 2466 . . 3 (𝑅 = 𝑆 → (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑥𝑆𝑥 ∧ ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧))))
1092ralbidv 2490 . 2 (𝑅 = 𝑆 → (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑆𝑥 ∧ ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧))))
11 df-po 4274 . 2 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
12 df-po 4274 . 2 (𝑆 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑆𝑥 ∧ ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧)))
1310, 11, 123bitr4g 222 1 (𝑅 = 𝑆 → (𝑅 Po 𝐴𝑆 Po 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wral 2444   class class class wbr 3982   Po wpo 4272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-clel 2161  df-ral 2449  df-br 3983  df-po 4274
This theorem is referenced by:  soeq1  4293
  Copyright terms: Public domain W3C validator