ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poeq1 GIF version

Theorem poeq1 4301
Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poeq1 (𝑅 = 𝑆 → (𝑅 Po 𝐴𝑆 Po 𝐴))

Proof of Theorem poeq1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4007 . . . . . 6 (𝑅 = 𝑆 → (𝑥𝑅𝑥𝑥𝑆𝑥))
21notbid 667 . . . . 5 (𝑅 = 𝑆 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑥𝑆𝑥))
3 breq 4007 . . . . . . 7 (𝑅 = 𝑆 → (𝑥𝑅𝑦𝑥𝑆𝑦))
4 breq 4007 . . . . . . 7 (𝑅 = 𝑆 → (𝑦𝑅𝑧𝑦𝑆𝑧))
53, 4anbi12d 473 . . . . . 6 (𝑅 = 𝑆 → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝑥𝑆𝑦𝑦𝑆𝑧)))
6 breq 4007 . . . . . 6 (𝑅 = 𝑆 → (𝑥𝑅𝑧𝑥𝑆𝑧))
75, 6imbi12d 234 . . . . 5 (𝑅 = 𝑆 → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧)))
82, 7anbi12d 473 . . . 4 (𝑅 = 𝑆 → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥𝑆𝑥 ∧ ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧))))
98ralbidv 2477 . . 3 (𝑅 = 𝑆 → (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑥𝑆𝑥 ∧ ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧))))
1092ralbidv 2501 . 2 (𝑅 = 𝑆 → (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑆𝑥 ∧ ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧))))
11 df-po 4298 . 2 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
12 df-po 4298 . 2 (𝑆 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑆𝑥 ∧ ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧)))
1310, 11, 123bitr4g 223 1 (𝑅 = 𝑆 → (𝑅 Po 𝐴𝑆 Po 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wral 2455   class class class wbr 4005   Po wpo 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-cleq 2170  df-clel 2173  df-ral 2460  df-br 4006  df-po 4298
This theorem is referenced by:  soeq1  4317
  Copyright terms: Public domain W3C validator