![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfun | GIF version |
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfun.1 | ⊢ Ⅎ𝑥𝐴 |
nfun.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfun | ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-un 3157 | . 2 ⊢ (𝐴 ∪ 𝐵) = {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)} | |
2 | nfun.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2330 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2330 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
6 | 3, 5 | nfor 1585 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵) |
7 | 6 | nfab 2341 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)} |
8 | 1, 7 | nfcxfr 2333 | 1 ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 709 ∈ wcel 2164 {cab 2179 Ⅎwnfc 2323 ∪ cun 3151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-un 3157 |
This theorem is referenced by: nfsuc 4439 nfdju 7101 |
Copyright terms: Public domain | W3C validator |